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Abstract. Shortening and extension of mechanically-layered ductile rock generates folds and pinch-and-swell 

structures (also referred to as necks or continuous boudins), which result from mechanical instabilities termed 

folding and necking, respectively. Folding and necking occur in layered rock because the corresponding mechanical 10 

work involved is less than that associated with a homogeneous deformation. The effective viscosity of a layered 

rock decreases during folding and necking, even when all material parameters remain constant. This mechanical 

softening due to viscosity decrease is solely the result of fold and pinch-and-swell structure development and is 

hence termed structural softening (or geometric weakening). Folding and necking occur over the whole range of 

geological scales, from microscopic up to the size of lithospheric plates. Lithospheric folding and necking are 15 

evidence for significant deformation of continental plates, which contradicts the rigid-plate paradigm of plate 

tectonics. We review here some theoretical and experimental results on folding and necking, including the 

lithospheric scale, together with a short historical overview of research on folding and necking. We focus on 

theoretical studies and analytical solutions that provide the best insight into the fundamental parameters controlling 

folding and necking, although they invariably involve simplifications. To first order, the two essential parameters to 20 

quantify folding and necking are the dominant wavelength and the corresponding maximal amplification rate. This 

review also includes a short overview of experimental studies, a discussion of recent developments involving mainly 

numerical models, a presentation of some practical applications of theoretical results, and a summary of similarities 

and differences between folding and necking. 

 25 
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1 Introduction 

About 200 years ago Sir James Hall made his famous analogue experiments on layer-parallel shortening of 

linen and woollen cloth layers with vertical confining pressure provided by “a door (which happened to be off the 

hinges)” loaded with weights (Hall, 1815; Figure 1). During shortening the layers deflected laterally (orthogonal to 

the shortening direction), which is a process termed buckling (mainly used for elastic material) or folding (mainly 30 

used for viscous material; Figure 2A, B). James Hall was probably the first to show that natural folds in rock are the 

result of a horizontal compression. However, some of the first scientific observations on folds were already made 

more than 100 years earlier, by Marsili and Scheuchzer in 1705, in the European Alps around Lake Uri in 

Switzerland (see Hantke, 1961; Ellenberger, 1995; Vaccari, 2004; Figure 3A). If a competent layer is extended, 

rather than shortened, it does not usually deflect but either breaks (brittle or fracture boudinage) or locally thins in a 35 

ductile manner (necking; Figure 2C, D). The term boudinage goes back to Lohest (1909) but necking structure 

(often termed pinch-and-swell structure) was probably first described by Ramsay in 1866 (Ramsay, 1866; Cloos, 

1947; Lloyd, et al., 1982; Figure 3B). The finite strain deformation geometry of a competent layer is thus 

fundamentally different for layer-parallel shortening and extension (Figure 4), although the initial stages of both 

folding and necking instabilities can be mathematically explained with the same theory (e.g. Smith, 1975, 1977). 40 

The mechanical processes controlling the different behaviour of competent layers under compression and extension 

are the main focus of this review.   

Folding and necking are processes that result from instabilities in elastic, plastic and viscous material caused 

by layer-parallel compression and extension, respectively, of mechanically competent layers. In this review, the 

overall deformation behaviour is assumed to be ductile and continuous so that fracturing does not play any 45 

controlling role. However, after some amount of ductile necking a layer often fractures around the necked region, 

which is a process termed ductile fracture (e.g. Dieter, 1986), and necking can act as a ductile precursor to brittle 

boudinage. It is also possible in nature that brittle precursors can localize shearing (Segall and Simpson, 1986; 

Mancktelow and Pennacchioni, 2005; Pennacchioni and Mancktelow, 2007) and hence trigger the formation of 

pinch-and-swell structure (Gardner et al., 2015). 50 

The structures resulting from folding and necking can have a wide variety of different geometries, especially in 

multilayers (Ramberg, 1955; Ramsay and Huber, 1987; Price and Cosgrove, 1990; Goscombe et al., 2004; Figure 5). 

As noted by Ramsay and Huber (1987), “folds are perhaps the most common tectonic structure developed in 
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deformed rocks” and a thorough understanding of folding is therefore essential to understand the deformation of 

typically layered or foliated rocks. Folds can also be generated by passive flow or bending but here we focus only on 55 

folds resulting from mechanical instability due to layer shortening. Pinch-and-swell structure seems to be less 

frequent in nature than folds and this review will provide potential reasons to explain this observation. Folding and 

necking (and also brittle boudinage) can occur simultaneously, with necks and/or boudins commonly forming in the 

limbs of folds (Ramberg, 1959; Figure 5). In nature, folding and necking are always three-dimensional (3D) 

processes (Figure 6), but most theoretical results are based on 2D models. 60 

Folding and necking are important tectonic processes because they occur over the whole range of geological 

scales, from microscopic dimensions up to the size of lithospheric plates. Lithospheric folding and necking in 

tectonic plates contradict the paradigm of plate tectonics sensu strictu, which states that tectonic plates are rigid and 

deformation only occurs at plate boundaries. Lithospheric folding can occur on a length scale of several thousands 

of kilometres, such as in Central Asia (Burov et al., 1993; Figure 7A). Lithospheric necking is also important, for 65 

example, in the formation of rift basins (Zuber and Parmentier, 1986) and of magma-poor passive continental 

margins, because many of these margins are characterised by so-called necking domains in which the crustal 

thickness decreases from normal crustal thickness (30-35 km) to ca. 5-10 km (Sutra, et al., 2013). Lithospheric 

necking can also generate crustal-scale pinch-and-swell structure (Fletcher and Hallet, 1983; Gueguen et al., 1997; 

Figure 7B) and is a first-order process during slab detachment (Lister et al., 2008; Schmalholz, 2011; Duretz et al., 70 

2012; Bercovici et al., 2015). 

The literature on the mechanics of folding and necking is vast because these processes (i) occur from mm to 

km scale, (ii) were studied for a variety of constitutive equations (rheologies) such as elastic, plastic, viscous, 

viscoelastic or viscoelastoplastic, (iii) can be driven by imposed boundary displacements, velocities, or stresses, or 

by gravity, (iv) were studied for different bulk deformation geometries such as pure shear, simple shear or 75 

wrenching, (v) were studied for single- or multilayer configurations, (vi) were studied for isotropic and anisotropic 

materials, (vii) were studied in 2D and 3D and (viii) were studied using analytical solutions, laboratory (analogue) 

experiments, or numerical simulations. We present here only a small selection of studies and results. Further 

information on the mechanics of folding and necking in rock can be found in textbooks (Price and Cosgrove, 1990; 

Johnson and Fletcher, 1994; Pollard and Fletcher, 2005) and in other review articles (Hudleston and Treagus, 2010; 80 

Cloetingh and Burov, 2011). 
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We focus on studies that investigated particular mechanical aspects of folding and necking and on studies that 

applied the results to geological observations and problems. Particular geological questions concerning folding and 

necking are, for example, (i) which parameters control the observed geometry of folds and pinch-and-swell 

structures, (ii) how much shortening or extension is required to generate the observed finite (high) amplitude folds 85 

and pinch-and-swell structures, (iii) does folding and necking change the overall (effective) strength of a rock unit, 

and (iv) how much force or stress is required to generate observed folds and necks, particularly on the lithospheric 

scale? 

  

2 Folding 90 

2.1 Theoretical results 
Theoretical studies and analytical solutions invariably involve simplifications but can provide the best insight 

into the fundamental parameters controlling a mechanical process. The aim of such studies is thus to determine the 

(hopefully) small number of (non-dimensionalized) controlling parameters and to investigate their specific 

influence. 95 

2.1.1 Single-layer folding 
Some of the first mathematical studies on bending of beams were performed by Galilei (1638) who studied the 

strength of beams under beam-orthogonal loading (Figure 8A). A beam is a 2D layer which is much longer than 

thick and a number of simplifications can therefore be made for the geometrical description of the bending. A first 

beam theory was developed in the 18th century with major contributions from Euler and Bernoulli and is hence often 100 

termed the Euler-Bernoulli beam theory (see Timoshenko, 1953; Szabo, 1987). It is assumed that the central 

(neutral) line in the beam is neither extended nor shortened and that the inner side of the beam is shortened while the 

outer side is extended, that is, there are both layer-parallel extensional and compressional strains in the beam due to 

bending. A major result of the Euler-Bernoulli beam theory is that it can relate the layer-parallel strain, xxε , due to 

bending of the beam to the amplitude, A, of the deflection of the beam (Figure 9) 105 

 
2

2xx
d Ay
dx

ε = −   (1) 

In this equation, y is the orthogonal (vertical) coordinate measured from the middle line of the beam and x is the 

coordinate along the beam (Figure 9). The second spatial derivative represents the curvature of the beam. For elastic 
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material, the total layer-parallel stress due to bending is xx xxKσ ε= , where K is a material property. For example, in 

a modern plane stress formulation, it corresponds to ( )2/ 1E υ− , with E being Young’s modulus (with units of Pa) 110 

and υ  being Poisson’s ratio (dimensionless). Frequently used symbols with a consistent meaning throughout the text 

are listed in Table 1.  

The bending moment associated with the flexure of the beam is 

 
/2 /2 2 3 2 2

2
2 2 2

/2 /2 12

H H

xx
H H

d A KH d A d AM y dy y K dy D
dx dx dx

σ
− −

= = − = − = −∫ ∫   (2) 

where H is the thickness of the beam and D is usually termed the flexural rigidity. If the beam is also compressed, 115 

then a horizontal compressional load, F, is present within the layer (with units of N/m in 2D). Euler (1744) solved 

this first buckling problem by equating the flexural moment due to bending of the beam, M, to the moment caused 

by compression of the deflected beam, FA (Fig. 9), to give 

 
2

2 0d AD FA
dx

+ =   (3) 

Euler’s famous result for the smallest load for which the beam buckles, the so-called Euler load (see also, for 120 

example, Bazant and Cedolin, 1991), is then 

 
22

EF D
L
π =  

 
  (4) 

The length, L (or wavelength), of the deflection is controlled by the initial length of the beam, assuming that both 

ends of the beam are fixed in vertical and horizontal position but can rotate freely. For loads smaller than EF  the 

beam does not buckle, assuming that it is initially perfectly straight. 125 

Equation (3) describes the balance of moments acting on a compressed beam that can deflect freely because 

the beam is not embedded in another material and gravitational stresses arising due to the deflection are also not 

considered. If there is an additional stress, q, which resists the vertical deflection of the beam, either due to an 

embedding medium or gravity, then Eq. (3) has to be expanded to (e.g. Smoluchowski, 1909; Biot, 1961) 

 


4 2

4 2
Vertical stress due to 
embedding medium Horizontal stress Horizontal stress 

and/or gravitydue to bending due to compression

0A AD F q
x x

∂ ∂
+ + =

∂ ∂
 

  (5) 130 
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with the convention here, opposite to Biot (1961), that q is positive when acting against the positive direction of the 

deflection A. Equation (5) represents an approximate force balance equation in 2D and the derivation of this 

approximate equation from the full set of 2D force balance equations is given in Appendix 1. In Eq. (5), D is 

assumed constant and all terms (summands) have units of Pa. In a geological context, the above equation was 

probably first solved by Smoluchowski (1909), who considered crustal folding and used q gAρ= , where ρ is the 135 

crustal density and g the gravitational acceleration (see section 2.1.3 on lithospheric folding). The results of 

Smoluchowski were re-derived by Goldstein (1926), who also applied them to folding of the Earth’s crust. In 

engineering applications, the resistance of an elastic medium below the layer (often termed the foundation) 

commonly has the form q kA= , where k is termed an elastic foundation modulus. The resistance of an elastic 

foundation is hence directly proportional to the deflection, A. The terms describing the resistance of an elastic 140 

foundation and the resistance due to gravity are mathematically identical if we identify k  with gρ .  

Equation (5) is a 1D equation that can be used to study 2D folding (buckling) because of the assumption 

that the horizontal strain can be expressed by the second spatial derivative of the vertical deflection, A (Eq. (1)). 

Many studies on folding, involving elastic, viscous and viscoelastic material (see below), are based on this 

simplified equation and we refer to the approach of using such a simplified “beam equation” or “thin-plate equation” 145 

as the thin-plate approach. The thin-plate approach can also be applied to 3D folding of plates. The thin-plate 

equations for 2D and 3D have been continuously developed and derived in the 18th, 19th and 20th centuries 

(Timoshenko, 1953; Szabo, 1987). The derivation of a general thin-plate theory applicable for 3D buckling of plates 

was finalized by Kirchhoff (1855).  

 Sander (1911) observed that, for multilayers within a quartz phyllite, the size of individual folds is related 150 

to their layer thickness and that folds become systematically smaller as their layer thickness becomes thinner (e.g., 

Figure 10). He termed this observation the “law of fold size” (in original German: Gesetz der Stauchfaltengrösse). 

Several authors applied variations of Eq. (5) to folded rocks to derive formulas for the size or wavelength, L, of folds 

(e.g. Gunn, 1937; Kienow, 1942). These studies applied a foundation term, q, which is proportional to A but 

independent of the wavelength, L, of the deflection. Biot (1937) showed that if the embedding medium is more 155 

correctly considered as a two-dimensional elastic half-space, then the stress resistance of the embedding medium is 

 2q b A
L
π

=   (6) 
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where b is here a material parameter. The importance of this result is that the resistance of the embedding medium 

not only depends on the amplitude of the deflection but also on the wavelength of the deflection (Figure 11). 

Based on Biot’s correspondence principle (1954a, 1956a – see Biot, 1961), the thin-plate equation for 160 

elastic material can be easily applied to viscous and viscoelastic materials (Biot, 1957).  For incompressible viscous 

material, the horizontal total stress to calculate the moment, M, is 4xx xxDσ η= , where η is the viscosity and the 

strain rate due to bending, Dxx, can be calculated from the time derivative of Eq. (1) 

 
3

2
xx

xx
d d AD y
dt dx dt
ε

= = −   (7) 

The factor 4 for the total horizontal stress ( 2xx xxP Dσ η= − +  with P being the pressure) arises because it is assumed 165 

that the layer can expand freely vertically, so that 2 0yy yyP Dσ η= − + = , which yields 2 yyP Dη= . Using the 

incompressibility condition yy xxD D= −   yields 2 xxP Dη= −  and 4xx xxDσ η=  (Biot, 1961). From 4xx xxDσ η= , it 

also follows that the horizontal load is 4 xxF D Hη= , where xxD  is the bulk rate of shortening (i.e. the shortening 

between the two ends of the layer, indicated with an overhead bar). In passing, it should be noted that there is always 

a “tectonic” or “dynamic” overpressure in the shortening layer that is directly proportional to the viscosity η  and 170 

bulk shortening rate xxD  in the layer ( 2 xxP Dη= − ; e.g. Mancktelow, 1993, 2008). For extension of the layer, the 

sign is simply reversed and there is an underpressure of equal magnitude, an observation that is relevant when 

considering why boudins often show more brittle behaviour. Assuming that the viscous layer is embedded in a 

viscous half-space, the net resistance of the embedding medium acting on the layer 24 M
dAq

L dt
πη= −  (Biot, 1961; 

see Appendix 2) with Mη  being the viscosity of the embedding medium. The thin-plate equation for folding of a 175 

viscous layer embedded in a viscous medium is then (Biot, 1961) 

 
3 5 2

4 2

24 4 0
3 xx M
H A A AD H

L tx t x
η πη η∂ ∂ ∂ − + − =  ∂∂ ∂ ∂  

  (8) 

In direct analogy to Eq. (5), the first term corresponds to the stress due to bending of the layer, the second to the 

stress due to compression, and the third to stresses due to the resistance of the surrounding medium. To solve the 

above partial differential equation (PDE) one assumes a solution of the form (Biot, 1961)  180 

 ( )0
2exp cosxxA A D t x
L
pα  = −  

 
  (9) 
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for which the derivative with respect to time, t, and coordinate, x, can be easily taken. The parameter α  is the non-

dimensional dynamic amplification rate of any initial deflection 0A (the kinematic component of amplification is 

ignored in the thin-plate approach; see below) and the minus sign in the exponent accounts for the convention that 

mathematically a shortening strain rate is negative (Figure 11). Substituting (9) into (8) and taking the derivatives 185 

transforms Eq. (8) into an algebraic equation of the form 

 
4 23 2 2 24 4 0

3 xx xx M xx
H D A D H A D A

L L L
η π π πα η η α     − + =     

     
  (10) 

which can be simplified by introducing 2 /s H Lπ= (the non-dimensional wavenumber) and / MR η η=  (the 
viscosity ratio) to 

 3 4 4 0
3
R s Rsα α− + =   (11)  190 

The amplitude, A, the bulk strain rate, xxD , and one term s  could be dropped from (10) because they are multiplied 

with every term in the equation. The algebraic Eq. (11) provides an expression for α  as function of L (within s) 

 2

1
1

12
s

sR

α =
+

  (12) 

As seen from plots of this relation in Figure 12, all wavelengths are amplified but there is a wavelength, the so-

called dominant wavelength, dL , for which α  is at a maximum. The value of dL can be found by taking the 195 

derivative of α  with respect to L, setting this derivative to zero and solving for L, which yields 

 
1
3

2
6d
RL Hπ  =  

 
  (13) 

from which it is immediately obvious that the dominant wavelength is directly proportional to the layer thickness 

and increases with increasing viscosity ratio of layer to matrix (Figure 12). This famous dominant wavelength 

expression was first derived by Biot (1957) using the thin-plate approach described above. The maximum growth 200 

rate corresponding to dL  is found by substituting (13) into (12) and is 

 
2/34

3d Rα  =  
 

  (14)  
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This value also increases with the viscosity ratio. Eq. (14) already indicates that the thin-plate approach is inaccurate 

for small values of R because 1.21dα ≈  for 1R =  but for 1R =  (no viscosity difference between layer and matrix) 

the amplification rate should be zero (since passive layer thickening is not considered in the thin-plate approach).  205 

 For comparison with a viscous layer, the dominant wavelength for an elastic layer embedded in a linear 

viscous medium is ( )1/22 /d eL H Gπ σ=  and the corresponding maximal amplification rate is 

( ) ( )1/2/ / 6d e e MGα σ σ η= , where G is the shear modulus of the layer and eσ  is the elastic compressive stress in the 

layer (Biot, 1961; Schmalholz and Podladchikov, 2001a). For an elastic layer, the dominant wavelength is 

independent of the viscosity of the embedding medium. If the layer is viscoelastic and its rheology is described by a 210 

Maxwell model (i.e. elastic and viscous element connected in series), then the layer behaves as effectively viscous 

for 1λ <  and effectively elastic for 1λ > , whereby λ  is the ratio of the dominant wavelength for a viscous layer to 

the dominant wavelength for an elastic layer, that is ( ) ( )1/3 1/2/ 6 /eR Gλ σ=  (Schmalholz and Podladchikov, 1999). 

If the viscoelasticity of the layer is described by a viscous and elastic element connected in parallel (Kelvin model), 

then the layer behaves as effectively viscous for 1λ >  and effectively elastic for 1λ <  (Schmalholz and 215 

Podladchikov, 2001b).   

As discussed in some detail by Biot (1961), the selectivity of amplification, and therefore the tendency to 

develop a clear sinusoidal form with a wavelength approximating that of the dominant wavelength, depends on the 

relative bandwidth of the amplification rate curve, which he defined as the wavelength difference at half the 

maximum amplification rate ΔL divided by Ld (Fig. 6 in Biot, 1961). He found that 220 

 
( )

1.36
logd d

L
L α
∆

≈   (15) 

and that the selectivity therefore depends only on the maximum amplification rate (and thus the viscosity ratio) but 

that this dependence is relatively weak, as can be qualitatively seen in Figure 12. At lower viscosity ratios (e.g. 15 in 

Figure 12A), fold trains will be more irregular and the initial perturbation geometry will have an increasing 

influence (Abbassi and Mancktelow, 1990, 1992; Mancktelow and Abbassi 1992; Mancktelow, 2001). It should be 225 

noted that the analysis presented above is specifically for infinitesimal amplitudes, so that the dominant wavelength 

and amplification rate derived represent initial values when the fold amplitude is very small. 
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 A different approach to derive dL  was presented by Ramberg (1962). He considered the full 2D force 

balance equation of a viscous fluid and solved the equations with a stream function approach (see Appendix 2). The 

stream function approach provides the complete 2D velocity and stress fields for a viscous layer embedded in a 230 

viscous medium. From the stress field, Ramberg calculated the horizontal force required to fold the layer as a 

function of the wavelength and determined the wavelength for which this force is minimal. The stream function 

approach provides an expression for dL  that is identical to the one of Eq. (13) (Ramberg, 1962). Ramberg (1962), in 

his Eq. 32, has a factor 4 in the expression for dL , because he used the half-layer thickness for H.        

The stream function approach was later used by Fletcher (1974) to perform a hydrodynamic stability 235 

analysis for single-layer folding of a power-law viscous layer. Detailed mathematical descriptions of the stream 

function approach in combination with a hydrodynamic stability analysis are given in Fletcher (1974, 1977), Smith 

(1975, 1977), Johnson and Fletcher (1994) and Pollard and Fletcher (2005). We term this approach here stability 

analysis, but this approach has also been termed perturbation method or thick-plate analysis. We do not use the term 

thick-plate analysis to avoid confusion with the thick- or shear-deformable plate theory, which is an elaboration of 240 

the thin-plate equation that considers also shearing within the layer (e.g. Wang, et al., 2000). As will be shown later, 

the same stability analysis can also be applied to study necking (Smith, 1975, 1977). The stability analysis assumes 

that geometrical perturbations are superposed on a flat layer that is shortening and thickening by pure shear (the 

basic state). In a stability analysis, the initial deflection, A0, of the thin-plate approach corresponds to the amplitude 

of a sinusoidal geometrical perturbation superposed on a flat layer boundary. The stability analysis provides an 245 

expression for the time derivative of A of the general form 

 [ ]1 xx
dA D A
dt

α= − +   (16) 

where the negative sign accounts for the convention that shortening strain rates are negative. In the stability analysis, 

the kinematic (or passive) amplification velocity due to the basic state pure shear thickening is taken into account 

and is given by xxD A− . This corresponds to a passive growth rate of 1, which is added to the dynamic growth rate 250 

α  within the square brackets of Eq. (16). Kinematic amplification is neglected in the thin-plate approach because 

the layer thickness is assumed to be constant during folding. The exact infinitesimal amplitude solution from 

stability analysis for the dynamic amplification rate α  is given by 
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 ( )
( ) ( ) ( )

1

2 22 1 1

2 1

1 1 1 / 2s s

R

R R e R e s
α

−

− − − −

− −
=

 − − + − −  

  (17) 

(Fletcher, 1974, 1977; Smith, 1977), where s is again the non-dimensional wavenumber 2 /s H Lπ= as defined 255 

above. A so-called closed form solution for the dominant wavelength cannot be derived because the mathematical 

expression in Eq. (1.17) is just too complicated. The above expression for α can be simplified by performing a 

Taylor expansion for / 1L H >> and keeping only dominating terms in /L H . The resulting expression for α  is 

identical to the one derived by the thin-plate approach (Eq. (12)) and of course the dominant wavelength is therefore 

also identical. In Figure 12, the exact solution of Eq. (17) is plotted in comparison to the simplified thin-plate result, 260 

and it is seen that the thin-plate approximation always overestimates the amplification rate, the dominant wavelength 

is shorter, and the thin-plate solution does not tend to a dynamic amplification rate of zero as the viscosity ratio 

approaches 1, as it clearly should in reality. The thin-plate solution becomes a better approximation with increasing 

viscosity ratio. 

Fletcher (1974) also derived a solution for α for power-law viscous fluids, which is given by his Eq. (8) as 265 

q(k) in that publication. The general solution for the amplification rate of folding, and also for necking, of power-law 

viscous layers embedded in power-law viscous medium is (Smith, 1977; Pollard and Fletcher, 2005) 

 ( ) ( )( ) ( )

( )

2 2

12 1
1

11 1 e e 2 e e
2sin

1 1 2 1, , 1 , ,

as as as as

xx
M

n
R

nQ Q Q
k

H nsign D a s Q
n n L n R

a θ
θ

β

πθ β

− −

  −  
  = − + −

− + + − + + 
  

= = = − = =

  (18) 

For folding the signum function of the bulk shortening rate ( ) 1xxsign D θ= = −  and for necking 1θ = . Plots of the 

amplification rate against L/H in Figure 13 show that, in comparison to the linear viscous case, the amplification rate 270 

is greater, the dominant wavelength is shorter and the selectivity is greater (i.e. narrower curve). In the exact power-

law infinitesimal amplitude solution, there is oscillation in the amplification rate curve as L/H approaches zero, as 

was discussed by Johnson and Fletcher (1994) with regard to their Fig. 8.2. Numerical models determining the 

amplification rate of folding in power-law viscous materials, as can be carried out very easily with the Folder 

package of Adamuszek et al. (2016), reproduce this oscillating growth curve (Fig. 13C) and it is not an artefact. 275 

However, considering the very low amplification rates (in part negative) and normalized wavelengths, it has little 
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practical influence on fold development in power-law materials. The dominant wavelength for folding of a power-

law viscous layer and the corresponding maximal amplification rate depend on both the viscosity ratio and the 

power-law stress exponent (Figure 14). The lower limit for the dominant wavelength to thickness ratio is ~4 (Figure 

14).   280 

With power-law viscous rheology, the approximate formula (for / 1L H >> ) for the dominant wavelength 

is   

 
1

1/2 3
2

6
M

d
nRL H
n

π
 

≈  
 

  (19) 

where n and nM are the power-law stress exponents of the layer and matrix, respectively. The approximate maximum 

value of α  corresponding to dL  is (Fletcher, 1974) 285 

 ( )1/3 2/31.21d Mn n Rα ≈   (20) 

A power-law viscous behaviour of the layer and/or the embedding medium (n and/or nm > 1) hence increases the 

amplification rate and consequently the folding instability. For a power-law viscous flow law such as 1/n
xx xxBDτ =  (B 

is a material property), the effective viscosity (ratio of stress to strain rate) can be expressed as a function of the 

square root of the second invariant of the strain rate tensor, IID , (Johnson & Fletcher, 1994) 290 

 ( )
1 1
n

C IIDη η −=   (21) 

A viscosity formulation with an invariant is required so that the flow law is independent of the chosen coordinate 

system (so-called material objectivity). For 2D incompressible flow the strain rate invariant reduces to 

2 2
II xx xyD D D= +   (e.g. Johnson & Fletcher, 1994). Using Eq. (21), the power law viscous flow law is then 

2xx xxDτ η=  where / 2C Bη = . The coefficient Cη  is not a viscosity because it has units Pas1/n and not Pas. It is 295 

useful to reformulate the above equation and to scale IID  by the absolute value of the bulk shortening rate, xxD , 

 ( )
1 11 1

11
n n

II IIn
C xx R

xx xx

D DD
D D

η η η

− −
−    
   = =
   
   

  (22) 

The parameter Rη  is a viscosity with units Pas and is the reference viscosity corresponding to a homogeneous pure 

shear with a constant strain rate corresponding to xxD , since for this homogeneous pure shear rate II xxD D=
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(Figure 15). The viscosities used in the formulas for the dominant wavelength and corresponding amplification rates 300 

for power-law viscous material are typically the reference viscosities corresponding to the basic state of 

deformation, which is typically a homogeneous pure shear. Due to folding, strain rates deviate locally from the bulk 

shortening rate and cause local variation in the effective viscosity. Strain rates higher than the basic state strain rates 

cause a decrease in the effective viscosity and strain rates smaller than the basic state rate an increase in effective 

viscosity.  305 

Stability analysis is performed with linear equations and hence the nonlinear power-law flow law must be 

linearized. This is done by assuming that every quantity, such as strain rate (e.g. xxD ) or deviatoric stress (e.g. xxτ ) 

can be expressed as the sum of a quantity representing the basic, pure shear state of deformation (e.g. xxD  and xxτ ) 

and a quantity representing the perturbation (deviation) flow from the basic state of pure shear (e.g. xxD  and xxτ ), 

that is, for example xx xx xxD D D≈ +   (Figure 15). The nonlinear equations are then linearized by performing a Taylor 310 

expansion around the basic state, keeping only those terms that are linear in the perturbation quantities. The resulting 

flow laws for the perturbed, horizontal and shear stresses are then (e.g. Fletcher, 1974; Smith, 1977; Fletcher and 

Hallett, 1983; Johnson and Fletcher, 1994; Pollard and Fletcher, 2005)  

 
2

2

R
xx xx

xy R xy

D
n

D

η
τ

τ η

=

=









  (23) 

where Rη  is the reference viscosity for the basic state of pure shear deformation given in Eq. (22). The flow laws for 315 

the perturbing flow, that is the deviation from pure shear, are thus anisotropic, because the viscosity for the normal 

stresses (but not the shear stresses) is divided by n , which is a result of the linearization (Taylor expansion). This 

can also be seen qualitatively in Figure 15, reproduced in a modified form after Fig. 3 of Smith (1977). The implicit 

anisotropy in power-law viscous materials means that the effective viscosity for normal (perturbing) strains is 

smaller than for (perturbing) shear strains. The anisotropy occurs because the second strain rate invariant, 320 

2 2 2
II xx xyD D D= + , which controls the effective viscosity (Eq. (21)) is only sensitive to perturbations in normal strain 

rate xxD  but not to shear strain rates xyD . Using the assumptions xx xx xxD D D≈ +   and xy xy xyD D D≈ +   in 2
IID  and 

performing a multiple Taylor expansion for small xxD  and xyD  yields  2 2
II xxD D=  and 2 2 22II xx xxD D D=   because 

0xyD =  for the applied pure shear basic state of deformation (Smith, 1977). The anisotropy in the perturbing flow is 
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responsible for the difference between linear viscous and power-law viscous folding (and also necking; Smith, 325 

1977). A detailed derivation of the linearization of the power law flow law and the separation into basic state and 

perturbing flow can be found in Pollard and Fletcher (2005; their section 11.2.3). 

A note on nomenclature: for linear viscous fluids ( 1n = ) the stress continuously increases with increasing 

strain rate and the viscosity is constant. For power-law viscous fluids with 1n >  the stress also continuously 

increases with increasing strain rate but the effective viscosity continuously decreases with increasing strain rate 330 

(Eq. (21), Figure 15). In the geological literature, such power-law viscous fluids have been termed both strain-rate 

softening (due to the viscosity decrease; Smith, 1977) and strain-rate hardening (due to the stress increase; 

Schmalholz and Maeder, 2012). We use here the terminology strain-rate hardening, which follows the nomenclature 

in the material science literature (e.g. Ghosh, 1977). The term softening is usually applied to flow laws for which the 

stress decreases with increasing strain (i.e. strain softening) or strain rate (i.e. strain-rate softening). Strain-rate 335 

softening in power-law viscous materials is then expressed by a negative power law exponent ( 0n < ; e.g. Montesi 

and Zuber, 2002). 

Stability analysis is of great practical importance in nearly all branches of mechanics because it shows 

whether mathematically and mechanically correct solutions are possible (or stable) in nature. For example, pure 

shear shortening and thickening of a perfectly straight (rectangular) and competent viscous layer embedded in a less 340 

viscous medium, which takes place without folding, is a mathematically and mechanically correct solution. 

However, this solution is not stable because any small geometrical perturbations, which are always present in natural 

materials, amplify with faster velocities than the corresponding pure shear velocities and cause folding. 

Homogeneous pure shear deformation of a competent viscous layer therefore does not occur in nature, although the 

mathematical solution is correct. Stability analysis is thus essential to determine whether correct mechanical 345 

solutions are applicable to natural processes. For pure shear shortening of a layer of thickness H with geometrical 

perturbations of amplitude A, the kinematic (passive) velocity due to shortening/thickening is ( )/ 2k xxV H A D= +  

(assuming the vertical coordinate is zero in the middle of the layer) and the dynamic velocity due to active folding is 

a xxV D Aa= . Both velocities are equal when ( )/ 1/ 2 1A H α= −    (Schmalholz and Podladchikov, 2001a), which 

corresponds to the transition between passive kinematic shortening/thickening and active (“explosive”) folding (cf. 350 

Ramsay, 1967, Fig. 7-37). For active folding, a kV V>  and hence ( )/ 1/ 2 1A H α> −   . For example, for 20α = , 
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active folding occurs for /A H  > ~0.026, that is, when the amplitude is larger than ~2.6% of the layer thickness. If, 

for 20α = , the initial amplitude 0A is 0.026H<  then an initial deformation phase dominated by layer thickening 

occurs, but if 0A is 0.026H>  then the deformation is immediately dominated by “explosive” folding.          

The derivation of the theoretical dominant wavelength and corresponding amplification rates for linear and 355 

power-law viscous materials are only strictly valid for infinitesimal amplitudes but have been verified by both 

laboratory deformation experiments and numerical simulations at small fold amplitudes (e.g. Biot et al., 1961; 

Mancktelow and Abbassi, 1992; Schmalholz, 2006). The further development of fold geometries and the “selection” 

and “locking” of a fold wavelength have been discussed and analysed in a number of studies (Sherwin and Chapple, 

1968; Fletcher, 1974; Fletcher and Sherwin, 1978; Hudleston and Treagus, 2010). However, a detailed discussion of 360 

their results is beyond the scope of this review. 

 

The theories outlined above are valid for single layers with the imposed layer-parallel displacement, 

velocity or load directly applied at the ends of the layer. However, folded veins or dikes are not infinitely long and 

therefore a layer-parallel load is usually not directly applied at their ends. Schmid et al. (2004) considered folding of 365 

power-law viscous layers with a finite length, essentially corresponding to isolated inclusions removed from the 

lateral boundaries and embedded in a more extensive linear viscous medium. They considered the layers as ellipses 

with large aspect ratios (i.e. length to thickness ratio). If the viscous medium is shortened in a direction parallel to 

the long axis of the ellipse, the stresses in the surrounding viscous medium cause deformation and folding of the 

isolated, elongate ellipse. Finite-length single-layer folding is controlled by the dimensionless ratio ( )/a e MD aη η= , 370 

where a is the aspect ratio, [ ]( )11 2 / n
e M aη η η η −= +  for n ≥ 1 (with eη η= for 1n = ), and η  is the effective 

viscosity of the layer calculated with the bulk shortening rate of the medium (i.e. II xxD D=  in Eq. (21)). aD  

controls whether the theories assuming an infinite layer (for 1aD << ) can be applied or whether a modified theory 

has to be used. The modified theory is based on Muskhelishvili’s complex potential method and shows that the 

dominant wavelength for the general case of a finite length layer is 375 

 
1
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η

π
η

 
=  

 
  (24) 
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and the corresponding maximum amplification rate is  

 
2/3

1 4
1 2 3

e
d

a M

n
D

η
a

η
 

=  +  
  (25) 

For a linear viscous layer, dL  is identical to the one for an infinite layer (Eq. (13)). The analysis further shows that 

for finite-length layers ( 1aD >> ), the amplification rates are substantially reduced relative to the bulk shortening 380 

rate and that the growth of large wavelength to thickness ratio folds is suppressed.  

 

Both the standard thin-plate approach and the stability analysis assume that the fold amplitude grows 

exponentially with time, which can be seen in Eq. (9) or results from time integration of Eq. (16). The solution in 

Eq. (12) provides the amplification rate for all possible wavelengths (or Fourier components) and with this solution 385 

the evolution of fold shapes can be calculated analytically for certain initial layer geometries, such as an initial 

isolated bell-shaped geometry (Biot et al., 1961). The analytical treatment is possible because the bell-shaped 

geometry can be represented as an infinite cosine series by a known Fourier integral expression 

 ( ) ( )2 0
exp cos

1

by ab ak kx dk
x
a

∞
= = −

 +  
 

∫   (26) 

where x and y are the horizontal and vertical coordinates (with the origin on the central symmetry axis, see Fig. 14), 390 

2 /k Lπ=  is the wavenumber, b is here the amplitude of the bell-shape on its central symmetry axis (i.e. y = b for x 

= 0), and a controls here the width of the bell-shape. If it is assumed that for very small initial amplitudes the 

wavelength components are amplified independently, the amplified shape of the perturbation can be calculated at 

any time by simple linear superposition using (Biot et al., 1961) 

 ( ) ( )
0

exp cosy ab t ak kx dka
∞

= −∫   (27) 395 

whereα  is the amplification rate given by Eq. (12) and t is time. The integral in Eq. (27) can be calculated 

numerically and Eq. (27) allows the fold shape to be calculated for any time t (or strain; Figure 16). In Fig. 16, the 

analytically predicted fold evolution is compared with the evolution calculated by a numerical simulation based on 

the finite-element method. The comparison shows that the analytical prediction is valid up to moderate fold 

amplitudes (or fold limb dips), but also that the analytically predicted amplification becomes too large once the 400 

amplitudes exceeded a certain value. In the case of the bell-shaped perturbation of Fig. 16, the infinitesimal 
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amplitude, linear superposition approach is a good approximation up to ca. 20% bulk shortening, with a maximum 

limb dip of ca. 25° (Fig. 16C). 

As noted above, there is always a passive or kinematic component of layer parallel shortening and 

thickening that dominates at very small amplitudes before “explosive” folding manifests itself due to the exponential 405 

amplification rate. Indeed, as also presented above, in the limit of a perfectly planar layer, folds never develop 

regardless of the viscosity ratio and the layer will simply shorten and thicken. The result of this effect, which is not 

specifically considered in the thin-plate or stability analysis solutions above, is that the non-dimensional 

wavenumber, s, of a sinusoidal fold will increase during bulk shortening (Sherwin and Chapple, 1968) at a rate 

given, to first order, by 0/ 2 xxds dt D s= − , with 0s  being the initial non-dimensional wavenumber (e.g. Fletcher, 410 

1974). Combining this with differential Eq. (16) for the instantaneous growth in fold amplitude and numerically 

integrating through time allows the calculation of a “preferred wavelength” (Sherwin and Chapple, 1968; Fletcher 

and Sherwin, 1978) of maximum amplification for a particular imposed bulk shortening (Sherwin and Chapple, 

1968; Fletcher 1974; Fletcher and Sherwin, 1978; Johnson and Fletcher, 1994; Adamuszek et al, 2013). 

It is of course expected that the initial exponential amplification of Eq. (16) must eventually break down, 415 

because fold amplitudes cannot grow exponentially at the same rate forever during shortening, the dynamic rate (α) 

must decrease, but the passive component (the “1” in Eq. (16)) will remain. Indeed, both numerical calculations 

(Chapple, 1968; Zuber & Parmentier, 1996) and analogue experiments (Hudleston, 1973; Mancktelow and Abbassi, 

1992) showed that the exponential amplification only occurs when the fold amplitudes are small and that fold 

amplification slows down with increasing fold amplitude or fold limb dip. Analytical solutions for the finite 420 

amplitude evolution of single layer folds have been derived by, for example, Mühlhaus et al. (1994) and Schmalholz 

and Podladchikov (2000). The analytical solutions are derived by considering geometrical nonlinearities due to finite 

amplitudes in the thin-plate Eq. (8). For example, Schmalholz and Podladchikov (2000) argue that the bulk 

shortening rate is no longer a good measure for the shortening rate of the layer (and hence the load F) when the 

amplitude is finite because, due to layer deflection, the layer is shortening less than a horizontal line parallel to the 425 

direction of bulk shortening. Shortening of the layer at finite amplitudes is more accurately described by the 

shortening of the fold arc length (or span), S. Therefore, the value of xxD  which controls the layer-parallel load is 
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not given by the change of the horizontal wavelength, that is 1
xx

dLD
L dt

= , but by the change of the arc length, that is

1
xx

dSD
S dt

= . The fold arc length can be related to the fold amplitude by 

 
2

2 AS L
L

π≈ +   (28) 430 

The above relation can be derived with a Taylor expansion for the geometrical formula for the arc length. Due to the 

resulting nonlinearity (i.e. the 2A  term) in the thin-plate equation, an explicit solution for A as function of the 

shortening S (or time t) cannot be derived but an implicit solution is possible (Mühlhaus et al., 1994; Schmalholz 

and Podladchikov, 2000). The finite amplitude solution for amplification of the dominant wavelength component, as 

derived by Schmalholz and Podladchikov (2000), is then 435 

 
1

2 2
0 0 0

0 0

d

d dL L LA S
L L A L S

α
α α+ +   

=    
   

  (29) 

The subscripted index 0 indicates the initial value of the corresponding quantity. The solution (29) provides the 

evolution of /A L  with progressive shortening quantified by 0 /L L  (Figure 17). Values of 0 /L L  can be calculated 

for the corresponding value of /A L  (from which values of /S L  can be calculated from Eq. (28)) and hence a 

curve /A L  versus 0 /L L  can be plotted. A more accurate finite amplitude solution can be constructed if in Eq. (28) 440 

2π  is replaced by ( )22 / 1 3 /A Lπ  +  , which is a term calibrated with numerical simulations. The breakdown of the 

exponential amplification and the deviation from exponential amplification occurs approximately at a ratio of 

amplitude to wavelength of (Schmalholz and Podladchikov, 2000; Schmalholz, 2006) 

 1
2 d

A
L π α
=   (30) 

Assuming a sinusoidal fold shape the ratio /A L  corresponds to a maximal limb dip of ( )atan 2 / 180 /A Lπ π . 445 

Hence, using Eq. (14) for linear viscous folding the breakdown of the exponential solution occurs at ~24 degrees 

limb dip for a viscosity ratio of 25 and at ~15 degrees limb dip for a viscosity ratio of 100. 

For the non-sinusoidal, bell-shaped initial perturbation of Figure 16, with a viscosity ratio of 75, 

comparison with the numerical model indicates that the approximation is very good up to a maximum limb dip of 

ca. 25 degrees (Figure 16c). The arc length in this example is determined by the finite shape and therefore by a non-450 
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linear function of the amplitude and wavelength of the full infinite cosine Fourier series. It is clear that a simple 

linear superposition approach, as presented by the theoretical curve in Figure 16, must therefore break down at finite 

amplitude. A solution for multiple waveforms represented by a Fourier series, such as the case for the bell-shaped 

perturbation, was derived by Adamuszek et al. (2013, their Appendix B). However, it should be noted that the plots 

of their improved (and complex) solution relative to numerical models, presented in their Fig. 12, are not such a 455 

dramatic improvement when compared to the simple linear superposition employed in Figure 16. 

Adamuszek et al. (2013) combined the two previously proposed corrections to the original linearized 

theories outlined above, namely the effect of homogeneous shortening and thickening on the non-dimensional 

wavenumber and the need to consider the shortening rate along the layer at finite amplitude, rather than the 

shortening rate imposed at the boundaries, into a combined and more accurate model for large amplitude folding 460 

(LAF). Their solution allows the quite exact prediction of fold geometries up to moderate limb dips of ~20 degrees. 

However, they also show that numerical solutions are required to accurately predict the shape of folds with larger 

limb dips or finite amplitudes, or more complicated geometries due to initial irregularities.      

The finite amplitude solutions outlined above are still fundamentally based on an elaboration of the linear 

thin-plate approach. It is also possible to further elaborate the linear first-order stability analysis in order to obtain 465 

results that are more accurate for finite, but still small amplitudes, by considering sinusoidal terms up to third-order 

(Fletcher, 1979; Johnson & Fletcher, 1994). This higher-order stability analysis provides results which are valid up 

to moderate limb dips of ~30 degrees and in particular provides more accurate fold geometries than the first-order 

analysis and the thin-plate approach, especially for small to moderate viscosity ratios (< ~50).   

One particular result of the finite amplitude solution is that the layer-parallel load, F, required to drive 470 

folding decreases with increasing amplitude and hence shortening. This decrease in F with increasing shortening is 

only due to geometrical effects and is usually termed structural softening (or geometric softening/weakening; e.g. 

Schmalholz et al., 2005; Schmalholz and Schmid, 2012). Structural softening can be quantified by determining the 

evolution of the effective viscosity of the entire layer-medium system. The effective viscosity of a rock unit 

consisting of competent layers embedded in a weaker medium during shortening with a constant bulk rate of 475 

deformation can be calculated by the ratio of the area-averaged stress (e.g. the second invariant of the deviatoric 

stress tensor) to the bulk rate of deformation. If shortening was accommodated by homogeneous pure shear at a 

constant rate, the layer would deform by homogeneous shortening and thickening, and the effective viscosity of the 
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layered rock unit would remain constant. However, if folding takes place, the effective viscosity decreases during 

bulk shortening, because the area-averaged stress is smaller during folding than during pure shear thickening (Figure 480 

18). 

Implicit in developing the analytical solutions above and in many analogue and numerical models is that 

there are basically three stages of fold development. As is obvious from Eq. (16), the amplification velocity /dA dt  

is directly proportional to both A and 1 α+ . If the initial amplitude of irregularities in the layer is small and/or the 

dynamic amplification rate is low (low viscosity ratio / Mη η ), there will be an initial stage of dominantly layer-485 

parallel shortening and thickening without obvious fold development. Eventually, as the amplitude increases, this 

will be followed by an “explosive” period of growth to finite amplitude (Ramsay, 1967), during which the bulk 

shortening is predominantly accommodated by the folding. This cannot go on indefinitely, and the dynamic 

amplification rate will decay toward zero, especially at limb dips > 45 degrees, in which case the limbs are now 

infinitesimally stretched rather than shortened. Based on the finite amplitude solution of Eq. (29), Schmalholz 490 

(2006) therefore separated the amplification of single layer folds into three stages:  (1) a nucleation stage, during 

which the amplification velocity is continuously increasing (acceleration);  (2) an amplification stage, in which the 

amplification velocity is decreasing but the dynamic amplification rate is still greater than the kinematic 

amplification rate (i.e. α > 1); and (3) a third, kinematic stage, where the dynamic amplification rate is less than the 

kinematic one (i.e. α < 1)  and fold amplification is predominantly passive, that is, controlled by the basic state of 495 

pure shear deformation. 

 

An important, and still controversial question, is the magnitude of the effective viscosity ratio implicit in 

observed natural single-layer folds (e.g. Hobbs et al., 2008; Schmid et al. 2010). Using Eq. (16) for the amplification 

of the dominant wavelength with the maximal amplification rate, integrating it in time with A0 being the initial 500 

amplitude (at t = 0) and rearranging the terms yields 

 ( )0ln /
1d

xx

A A
D t

α = −
−

  (31) 

The product xxD t  quantifies the bulk shortening. Folding could be considered significant if amplification 

0/ 10A A >  can be achieved within 20% shortening ( 0.2xxD t = ), which requires that 10dα > . Although the 

development of distinct finite-amplitude folds still depends on the initial magnitude of irregularities in the layer (A0), 505 
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it is a reasonable conclusion that the dominant amplification rates, which can be calculated for various scenarios 

described above, should be at least larger than 10 for significant folding to take place. If the material properties are 

known, one can then calculate and predict whether significant folding would take place or not. On the other hand, if 

one can observe folds, it can be deduced that dα  was at least larger than 10 and make estimates for the material 

parameters, such as estimating the minimum viscosity ratio for linear viscous folding. For example, folding of a 510 

viscous layer in a viscous medium requires a viscosity ratio larger than ~25 to achieve 10dα >  (see Eq. (20)). 

However, if both layer and embedding medium are power-law viscous, then for n, nm = 3 an effective viscosity ratio 

of > ~8 is sufficient (e.g. Schmid et al., 2010). 

 As a concise summary, the simpler solutions for the dominant wavelength and corresponding maximal 

amplification rate derived above are listed in Table 2. 515 

3D viscous folding has also been studied analytically with both the thin-plate (Ghosh, 1970) and the 

stability analysis for linear viscous (Fletcher, 1991) and power-law viscous fluids (Fletcher, 1995; Mühlhaus et al., 

1998). The finite amplitude solution in Eq. (29) has been elaborated for 3D folding to take into account the ratio of 

the two orthogonal, layer-parallel shortening (or extension) rates and was verified with 3D numerical simulations 

(Kaus and Schmalholz, 2006). 520 

 

2.1.2 Multilayer folding 
Multilayer folds (Figure 5, Figure 10) are more frequent in nature than single-layer folds. The mechanics of 

elastic multilayer buckling was already discussed in Smoluchowski (1909) and we provide here only a short review. 

Viscous multilayer folding is also discussed in detail in Johnson and Fletcher (1994) and a review of multilayer 525 

folding can be found in Hudleston and Treagus (2010). 

The thin-plate approach shows that if a multilayer is composed of m layers with identical thickness then the 

dominant wavelength increases by the factor of 3 m  (Biot, 1961). Ramberg (1962) applied the 2D stream function 

approach to viscous multilayer folding and introduced the concept of contact strain. This concept states that strain 

due to folding is negligible outside a zone about one initial wavelength wide on either side of the folded sheet. This 530 

means that layers spaced at a distance greater than the wavelength of embryonic folds do not interact and can hence 

fold independently (so-called “disharmonic” folds, e.g. Ramsay and Huber, 1987). An important first result of these 

multilayer studies is that a multilayer with many stiff layers folds with a faster amplification rate than a single stiff 
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layer in the same medium, that is, folding instability increases with the number of competent layers (Biot, 1961; 

Ramberg, 1963). Another important result is that the dominant or preferred (Ramberg, 1962) wavelength increases 535 

but the selectivity decreases (i.e. increasing bandwidth) as the relative thickness ratio of the lower viscosity to the 

higher viscosity layers decreases away from infinity (the single-layer case considered previously above) and that 

below a critical value there is no real wavelength selection and the preferred wavelength is as long as the body 

happens to be (e.g. see Fig. 5 of Ramberg, 1962; Fig. 4 of Ramberg, 1964; Fig. 7-40 of Ramsay, 1967). 

In a series of articles, Biot developed a theory of internal buckling and multilayer folding (Biot, 1964a; 540 

Biot, 1964b; Biot, 1965a; Biot, 1965b). In his theory of internal buckling, he considered multilayers as a confined 

anisotropic or stratified medium under compressive stress (Biot, 1964a; Biot, 1965a). This simplifies the 

mathematical analysis, because the individual deformation of each competent and incompetent layer is neglected. 

Application of this internal buckling theory to viscous multilayers with competent and incompetent layers of equal 

thickness, H, and a viscosity ratio larger than 50, yields an approximate formula for the dominant wavelength of 545 

folds that develop in the confined multilayers of total thickness, totH (Biot, 1964):  

 1.9d totL H H=   (32) 

The striking result is that the dominant wavelength is independent (or extremely insensitive in the non-approximated 

formula) of the viscosity ratio between competent and weak layers. Biot presented several modifications of the 

dominant wavelength in confined multilayers, depending on various underlying assumptions, for example:  550 

 
1/62

1.9 1 3.63d tot
M

aL H H
m

η
η

 
= + 

 
  (33) 

where m in this case is half the number of layers and ( )/M Ma H H H= +  with MH  being the thickness of the 

incompetent layer. If 0a = , Eq. (33) reduces to Eq. (32), which means that the dominant wavelength of Eq. (32) 

represents multilayers where the incompetent layers have essentially zero thickness but are incompetent enough that 

there is negligible shear stress between the competent layers (i.e., the contact between the competent layers is 555 

perfectly lubricated). The results for the multilayer dominant wavelength presented above all show an extremely 

weak sensitivity on the viscosity ratio, with the immediate implication that multilayer fold geometries are not 

suitable for estimating viscosity ratios. 
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Biot further showed that in a homogeneous anisotropic (orthotropic) medium essentially two types of 

internal instability can occur, essentially corresponding to either folding or localized kink-band formation (Biot, 560 

1965b). Following Biot’s theory of internal instability, Cobbold et al. (1971) performed analytical analyses and 

laboratory experiments for compression of multilayers representing a homogeneous, anisotropic material and could 

validate the application of the analytical results for an anisotropic medium to true multilayers consisting of 

competent and incompetent layers. They further concluded that (i) the instability due to multilayer compression is 

mainly governed by the degree of anisotropy rather than rheological properties such as elasticity or viscosity, (ii) the 565 

form of the internal structure depends on the angle between layer orientation (or anisotropy orientation) and 

compression direction, (iii) sinusoidal folds (developing for low degrees of anisotropy) and conjugate kink-bands 

(developing for high degree of anisotropy) are end-members of a range of fold structures which can develop in 

anisotropic material, (iv) chevron folds (i.e. folds with long straight limbs and short angular hinges) can form by 

either convergence of conjugate kink bands or by progressive straightening of limbs during amplification of initially 570 

sinusoidal folds, and (v) the scale of an internal structure in an anisotropic (but statistically homogeneous) rock 

depends on the scale of the elements which cause the anisotropy. 

Johnson and Fletcher (1994) present solutions based on stability analysis for selective amplification during 

low-amplitude folding for many examples of multilayers with different configurations of stiff and soft layers and 

embedding medium. They show that the strength of the folding instability generally increases with (i) the number of 575 

stiff layers involved, (ii) increasing viscosity ratios between the stiff and soft layers and (iii) larger thickness of the 

soft medium embedding the multilayer (see also Ramberg, 1962, his Fig. 12). They further show that the 

amplification of multilayer folds with all layers having free slip interfaces is significantly stronger than for 

multilayers with all layers having no slip (bonded) interfaces (Johnson and Fletcher, 1994). The difference in 

interface condition (free slip versus bonded) is much more significant for folding of a multilayer than for folding of 580 

a single layer.  

A third-order stability analysis of viscous multilayer folding for small but finite amplitudes was performed 

by Johnson and Pfaff (1989) to study fold shapes in multilayers. They distinguished three end-member forms in 

multilayers: parallel, constrained and similar folds. Parallel (concentric) folds develop in multilayers confined by 

soft medium whereas constrained (internal) forms develop in multilayers confined by very competent medium. 585 

Similar (chevron) forms develop if wavelengths are short relative to the thickness of the multilayer.    

23

Solid Earth Discuss., doi:10.5194/se-2016-80, 2016
Manuscript under review for journal Solid Earth
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



Schmid and Podladchikov (2006) show that multilayer folding can occur in essentially three ways: as an 

effective single layer, as a true multilayer or as real single-layer folding (Schmid and Podlachikov, 2006). They 

consider a multilayer embedded in a weak medium. The multilayer is made of strong layers with equal thickness, H, 

and weak layers of equal thickness, b (generally with b ≠ H), alternating with the strong layers. Effective single 590 

layer folding occurs for / 1/ dH b L< , true multilayer folding for 1/ /d dL H b L< <  and real single-layer folding for 

/dL H b<  where dL  is the dominant wavelength given in Eq. (13). 

A particular problem of multilayer folding is the mechanism of formation of asymmetric parasitic folds (S 

and Z folds) or “polyharmonic” folds (e.g. Ramberg, 1963, 1964; Ramsay and Huber, 1987). As outlined above, 

studies have consistently shown that multilayers fold more strongly than individual single layers. However, in the 595 

field, individual small folds are often observed on the limbs of larger folds, indicating that the smaller, shorter 

wavelength folds developed in the thin layers must grow faster than the larger folds that involve more layers, so that 

the small folds can be amplified sufficiently to be observable on the limbs of larger folds (Treagus and Fletcher, 

2009). Frehner and Schmalholz (2006) performed 2D numerical simulations and showed that thin layers develop 

first symmetric folds during multilayer folding and that these folds are later transformed into an asymmetric shape 600 

due to relative shearing between fold limbs (Ramberg 1963; Frehner and Schmalholz, 2006). They argued that 

thinner layers have larger initial ratios of amplitude to thickness than thicker layers and that hence the “explosive” 

folding of thinner layers starts before “explosive” folding of the thicker layers. An alternative explanation was 

proposed by Treagus and Fletcher (2009) who studied analytically the amplification rates of individual layers within 

a multilayer for various configurations. They found that in viscous multilayers with a central thinner layer, the folds 605 

in the thin layer will initiate with greater amplification rates than larger folds of the whole multilayer if the 

multilayer is narrowly confined, and/or if the thin layer is the stiffest layer (Treagus and Fletcher, 2009).  

Some solutions for the dominant wavelength and maximal amplification rates for multilayers are 

summarized in Table 2. 

 610 

2.1.3 Lithospheric folding 
Lithospheric folding is of general geodynamic importance because it demonstrates that large regions of the 

interior of tectonic plates are deformable. Internal deformation of continental plates contradicts a basic principle of 

plate tectonics sensu strictu, which states that tectonic plates are essentially rigid and deformation should only occur 
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at plate boundaries. Continental lithospheric folding and necking can therefore be considered as a specific and 615 

important component of continental tectonics. 

Probably the first large-scale folding analysis was performed by Smoluchowski (1909), who considered an 

elastic beam and applied Eq. (5). Smoluchowski equated the load term q to gAρ , where ρ  is the crustal density. For 

elastic beams under gravity, a critical load, similar to the Euler load, is required to cause buckling (Smoluchowski, 

1909). However, if the beam is viscous it will fold no matter how small the applied compressive force (Biot, 1961). 620 

For a small compressive load the fold amplification rate will be negligibly small and Biot suggested that a horizontal 

stress > 9 gHρ∆  is required for folding to take place (Biot, 1961), where ρ∆  is the density difference between the 

material below and above the layer and H is layer thickness. Applying this formula to folding of the oceanic 

lithosphere using -33300 1000kgmρ∆ = -  and 20kmH =  gives an unrealistically high stress >~ 4 GPa. This stress, 

if vertically integrated over the thickness of 20 km, corresponds to an unrealistically high force per unit length of 625 

~8×1013 N/m. All studies on elastic lithospheric folding have shown that the stress required for folding is 

unrealistically high and hence folding of the lithosphere was considered impossible. However, McAdoo and 

Sandwell (1985) showed that for an elastoplastic layer, with lithospheric strength based on experimental rock 

mechanics, the average stress required to fold the oceanic lithosphere is reduced to 600 MPa, which could be a 

naturally realistic stress magnitude. They therefore concluded that the observed basement topography and geoid 630 

height in the northern Indian Ocean results from folding of the oceanic lithosphere, caused by the India-Asia 

collision.     

Biot (1961) also derived the dominant wavelength for a viscous layer floating on an inviscid medium in the 

field of gravity, which can be written as 

 
2 12 2 ;

2
xx

d F
F xx

D gHL H H Ar
gH Ar D

η rπ π
r η

D
= = =

D
.  (34) 635 

This dominant wavelength solution was rederived by Ramberg and Stephansson (1964) with a slightly different 

approach, and in addition was verified by them with laboratory experiments. In Eq. (34), FAr  is the Argand number 

for folding and represents the ratio of gravitational stress acting against folding to compressive stress driving folding 

(Schmalholz et al., 2002). The Argand number was originally introduced in a slightly different form for thin viscous 

sheet models (England and McKenzie, 1982). As mentioned above, the main difference between folding of an 640 
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elastic layer and a viscous layer is that for an elastic layer a certain load must be exceeded to initiate folding, that is, 

there is a critical load (e.g. Euler load) below which no instability appears, whereas for a viscous layer folding takes 

place for any compressive load. The formulation for the dominant wavelength for viscous and elastic folding under 

gravity is identical if the term 2 xxDη  in the viscous case is replaced by half the compressive load applied to the 

elastic layer (Biot, 1961). However, if the load is small then the maximal amplification rate dα  is less than one 645 

order of magnitude larger than the bulk shortening rate xxD  (i.e. 10dα < ) and hence folding is insignificant. 

Values of dα  should be at least  >10 for folding to be significant and observable for typical tectonic shortening of 

several tens of percent (see Sect. 2.1.1 above). Biot (1959, 1961) argued that 4 / ~ 9xxD gHη ρD >  is required for 

viscous folding under gravity to be significant. The maximum value of the amplification rate for folding of a power-

law viscous layer under gravity is (Schmalholz et al., 2002) 650 

 
26 6 xx
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Ar gH

η
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= =

D
  (35) 

The dominant wavelength for viscous and power-law viscous layers resting on an inviscid medium under 

gravity is the same (Schmalholz et al., 2002). Values of n for dislocation creep are usually in the range 3 - 5. The 

result for power-law viscous folding can also be applied to the oceanic lithosphere. Assuming n = 5, a total 

horizontal stress 4 xxDη = 350 MPa, a density difference between mantle lithosphere and water ρ∆ =2300 kgm-3 655 

and H = 25 km yields 9dα ≈ , which is not sufficient for significant folding. However, if we assume that the 

mechanically strong (upper) region of the mantle lithosphere is deforming by low-temperature plasticity (Peierls 

creep), then the effective (or apparent) value of n is in the range 10 – 25 (Dayem et al., 2009; Schmalholz and 

Fletcher, 2011) and we get 19 47dα ≈ − , a value sufficient for significant folding. Furthermore, if we assume that 

the competent level of the oceanic lithosphere is not overlain by water, but by unconsolidated sediments, then the 660 

density difference reduces to ρ∆  = ~1000 kgm-3 (Martinod and Molnar, 1995) and 43 107dα ≈ − . These 

amplification rates are sufficient for significant folding of the oceanic lithosphere. The assumed total stress of 350 

MPa integrated over an assumed 25 km thickness yields a force per unit length of 8.75×1012 Nm-1, which is a 

reasonable value (Martinod and Molnar, 1995). Also, the dominant wavelength for the applied values with ρ∆

=1000 kgm-3 is ~137 km, which is within the range of wavelengths observed in the northern Indian ocean of 130 – 665 
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250 km (McAdoo and Sandwell, 1985). It follows that the simple thin-plate based solution for folding of a power-

law viscous layer under gravity supports the proposal that folding of the oceanic lithosphere is feasible for 

reasonable compressive stresses. The observed fold wavelength can also be used to estimate the Argand number, 

FAr  (Eq. (34)), which requires an assumed value for the effective thickness of the lithospheric level that is actively 

folding. Assuming 25 km for this thickness, wavelengths between 130 and 250 km in the Indian ocean correspond to 670 

FAr  between 1.5 and 0.4, respectively. Assuming an effective thickness of 15 km gives 0.14 0.53FAr = − . For 

central Asia, Burov et al. (1993) estimated the wavelength due to folding of the mantle lithosphere to be between 

300 and 360 km (see also Figure 7). Note that for folding of the continental mantle lithosphere, which is 

mechanically decoupled from folding of the crust (Burov et al., 1993), the density difference relevant to folding is 

the difference between mantle and crustal density. Assuming effective thickness between 20 and 50 km for the 675 

folding mantle lithosphere with wavelength between 300 and 360 km gives 0.12 1.1FAr = − . These simple estimates 

suggest that values of FAr  are in the order of 0.1 to 1 for folding of oceanic and continental lithosphere. If, for both 

oceanic and continental lithosphere, it is the upper, cold level of the mantle lithosphere that controls folding and if 

this level deforms plastically or by low-temperature plasticity with effective values of 10 25n = − , then values of 

0.1 1FAr = −  correspond to significant folding based on Eq. (35). Cloetingh and Burov (2011) compiled 680 

wavelengths of folded lithosphere, including crustal, mantle and whole lithosphere folding, for 17 regions 

worldwide, including Central Asia (Burov et al., 1993), Central Australia (Lambeck, 1983), the NE European 

platform (Bourgeois et al., 2007), the Tibet/Himalayan syntaxes belt (Shin et al., 2015) and the Indian oceanic 

lithosphere (McAdoo and Sandwell, 1985; Krishna et al., 2001), and showed that all fold wavelengths are between 

40 and 700 km. Not surprisingly, wavelengths for crustal folding are smallest and wavelengths for whole lithosphere 685 

folding are largest. They also showed that the wavelengths increase with the thermo-tectonic age of the lithosphere, 

because older lithosphere is mechanically stronger and exhibits larger effective thickness of the folded levels. 

Cloetingh and Burov (2011) also discussed lithospheric folding as mechanism of sedimentary basin formation. 

Lithospheric folding has also been studied with the stability analysis (Zuber, 1987; Martinod and Davy, 

1992; Burov et al., 1993; Martinod and Molnar, 1995), which yields more accurate (but also more complicated) 690 

solutions for the amplification rate without changing the first-order results and conclusions of studies based on the 

thin-plate approach. The solution in Eq. (35) is strictly valid only for infinitesimal amplitudes and dα  decreases 
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with increasing fold amplitude according to the finite amplitude solution (Schmalholz and Podladchikov, 2000). 

Nevertheless, Eq. (35) indicates that plastic behaviour (n > ~10) can significantly increase the growth rate of a 

folding instability. Indeed, numerical simulations of lithospheric shortening considering representative viscoplastic 695 

yield strength profiles for the continental and oceanic lithosphere indicate that lithospheric folding most likely takes 

place during lithospheric compression (Zuber and Parmentier, 1996; Burg and Podladchikov, 1999; Cloetingh et al., 

1999; Gerbault, 2000). The intensity of folding depends mainly on the applied bulk shortening rate and the 

temperature at the Moho, which controls the integrated strength of the lithosphere (Schmalholz et al., 2009).        

Martinod and Molnar (1995) performed a stability analysis in which they considered a power-law viscous 700 

rheology and Mohr-Coulomb plastic yield strength of the Indian oceanic lithosphere. They argued that the oceanic 

lithosphere is overlain by unconsolidated sediments with average density of 2300 kgm-3, which gives 

-31000kgmρ∆ = . Their result indicates that a force per unit length of 4.8×1012 (±1.3×1012) N/m is sufficient to fold 

the oceanic lithosphere, which is a value significantly smaller than the ones obtained from simpler models based on 

folding of beams. This value is important because the lateral variation of the gravitational potential energy, caused 705 

by the lateral crustal thickness variation between the Indian foreland and the Tibetan plateau, generates a force per 

unit length of ~7×1012 N/m (Molnar and Lyon-Caen, 1988), which means that the growth of the Tibetan plateau 

could in principle have caused the folding of the Indian oceanic lithosphere (Molnar et al., 1993). The analysis of 

Molnar and co-workers caused some controversy because other authors using thin viscous sheet models argued that 

the values for the force per unit length related to the Tibetan plateau from Molnar and co-workers were 710 

overestimated by a factor of two and, hence, that the Tibetan plateau alone could not be responsible for folding of 

the Indian ocean lithosphere (Ghosh et al., 2006; Ghosh et al., 2009). However, the analysis of Molnar and co-

workers is based on total stress and differential stress (difference between maximal und minimal principal stress), 

whereas the results of thin viscous sheet models are based on deviatoric stress, which is half the differential stress in 

the thin viscous sheet model (Schmalholz et al., 2014). Furthermore, the force (or force per unit length in 2D) 715 

driving folding is controlled by the total stress ( 4 xxDη ) and not by the deviatoric stress ( 2 xxDη ; see Eq. (8)), so 

that the application of Molnar and co-workers of the force per unit length (calculated from differential stress) due to 

lateral variations in gravitational potential energy to folding of the oceanic lithosphere is correct.     

A frequently applied model for viscous deformation of the continental lithosphere is the thin viscous sheet 

model (England and McKenzie, 1982). This model assumes that lithospheric folding is negligible and that the 720 
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lithosphere deforms by homogeneous, kinematic thickening. Thin-sheet models consequently assume that vertical 

velocities due to folding are less than vertical velocities due to kinematic thickening and hence they assume that 

amplification rates for folding 1dα < . Thin-sheet models are useful to explain the first-order response of the 

continental lithosphere due to shortening on the scale of 1000's of kilometres but they are not suitable for estimating 

the deformation on the 100 km scale, because on this scale folding is likely to be important and may control the 725 

lateral variation of vertical velocities (Lechmann et al., 2011). For example, thin sheet models are useful to predict 

the average topography of Central Asia (Figure 7A) but not to predict the characteristic fold-like topography on the 

100's of kilometre scale and the related vertical velocities. 

 

2.2 Experimental results 730 
In most branches of science, proposed analytical solutions can be tested by direct observation or experiment. 

However, in the case of folding and necking of rock layers as considered here, this is impossible due to the long 

times and large forces, pressures, temperatures, and (often) length scales involved. By necessity, the progressive 

development of such structures can only be studied by analogue and, more recently, numerical modelling. Initially 

these analogue models were only qualitative but progressively became more quantitative with the application of 735 

correct scaling laws (Hubbert, 1937) and the use of materials more rheologically similar to rocks but deformable at 

lower stresses, temperatures and pressures. The pioneer in analogue modelling of folding was Hall (1815), who 

“conceived that two opposite extremities of each bed being made to approach, the intervening substance, could only 

dispose of itself in a succession of folds, which might assume considerable regularity, and would consist of a set of 

parallel curves, alternatively convex and concave towards the centre of the earth”. To test this premise he carried out 740 

his now famous experiments using layers of cloth to demonstrate that the folds he observed in nature could develop 

by shortening of horizontally layered rocks by application of a horizontal force (Figure 1). The experiments were 

entirely qualitative but established the basic principle. Since then, a large number of analogue experimental studies 

have investigated the influence of material contrast (e.g. viscosity ratios), rheology (elastic, linear and power-law 

viscous, plastic and different combinations), material anisotropy, and initial perturbation geometry on the initiation 745 

and development of single- and multi-layer folds and boudins. Only a limited selection are presented here as 

examples. 
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In a companion paper to Biot (1961), Biot et al. (1961) presented a series of analogue models aiming to 

provide experimental verification of the analytical results for folding of stratified viscoelastic media (Biot, 1957; 

Biot, 1961). These experiments considered layer parallel shortening of both elastic and viscous layers embedded in a 750 

viscous matrix. Biot’s thin-plate theory is for a layer of infinite length and predicts an amplification rate as a 

function of normalized wavelength (or wavenumber) given by Eq. (12) with a dominant wavelength, corresponding 

to the maximum amplification rate, given by Eq. (13). In an analogue model, a layer of infinite length is unattainable 

and an initial infinitesimal amplitude perturbation spectrum of perfect random white noise (all wavelength 

components present and with equal amplitude) is also unrealistic. A novel alternative approach proposed by Biot et 755 

al. (1961) was to consider the amplification of an initial isolated bell-shaped perturbation. This can be represented as 

an infinite cosine series by a known Fourier integral expression given in Eq. (26) and the evolving fold geometry 

with time (strain) can be calculated with Eq. (27). Biot et al. (1961) used this approach in a numerical evaluation of 

the time history of folding and sideways propagation away from an isolated perturbation but not in their analogue 

models. In these models, they used thin plates of aluminium or cellulose acetate butyrate (elastic layers) or roofing 760 

tar (viscous layers) in a corn syrup viscous matrix, without any prescribed initial perturbation, to establish a good 

correspondence with theory – at least for the very high viscosity ratios ( 32.22 10×  and 44.28 10× ) and 

corresponding long dominant wavelength to thickness ratios considered (45 and 121, respectively). As predicted by 

Biot’s theory, for such large contrasts in properties, amplification rates were high and wavelength selection strong, 

so that a relatively clear sinusoidal wave-train was rapidly developed. However, such high wavelengths are not 765 

typical of natural examples, where common wavelength to thickness ratios are between 2 and 16 with a mean value 

at ~6.5 (e.g. Hudleston and Treagus, 2010). 

 Ramberg and Stephansson (1964) performed laboratory experiments on folding of a viscous plate (made 

from molten mixtures of colophony and diethyl phthalate) floating on an aqueous solution of potassium-iodide to 

verify the dominant wavelength for folding under gravity given in Eq. (34). They showed that the value of /dL H  770 

developed in the experiments is linearly proportional to the ratio of / gHσ ρ∆ , where σ  is the compressive load 

applied in the experiments and corresponds to the value of 4 xxDη   in the theoretical analysis. The experiments 

hence verified the theoretical result for the dominant wavelength, which states that /dL H  is directly proportional to 

4 /xxD gHη ρD . 
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 Ghosh (1966) studied single-layer buckle folding under simple shear, using combinations of modelling 775 

clay, putty and wax. He noted that the fold axis developed parallel to the major axis of the strain ellipse on the 

surface of the layer (i.e. perpendicular to the principal component of shortening within the layer), which, for 

generally oblique layering, is not necessarily parallel to a principal axis of the applied bulk strain. He also noted that 

the single layer folds are, at least initially, generally symmetric despite the simple shear boundary conditions. This is 

consistent with the later, general observation of Lister and Williams (1983) that single layer buckle folds are good 780 

examples of coaxial spinning deformation (their Fig. 4) and agrees with results of numerical models (Viola and 

Mancktelow, 2005; Llorens et al., 2013a). Ghosh (1968) also did analogue experiments on multilayer folding to 

develop rough qualitative constraints on the transition from conjugate to chevron to concentric folds. Currie et al. 

(1962) had previously also qualitatively investigated single- and multi-layer folding in elastic materials using 

photoelastic gelatin. With this experimental technique they could not only investigate the influence of layer 785 

thickness and ratios in elastic properties on fold wavelength, but also analyse the stress trajectories in the layer and 

matrix during folding. Their experiments provided an excellent visual representation of the zone of contact strain 

around a folding layer and the consequent development of disharmonic or harmonic folding depending on the 

spacing between layers (their Plate 2). 

 Hudleston (1973) performed experiments to study the development of single-layer folds with shortening 790 

parallel to the layer. The material used for both layer and matrix were mixtures of ethyl cellulose in benzyl alcohol, 

which, at the low concentrations used in his experiments, is effectively linear viscous. The viscosity ratios 

considered were between 10 and 100 and thus much lower than those used by Biot et al. (1961). One of the aims of 

the experiments was to establish that folding to finite amplitude with such low ratios, and correspondingly short 

wavelength to thickness ratios, was possible, in contrast to what was implied in the original papers of Biot (1961) 795 

and Biot et al. (1961). In these experiments, Hudleston (1973) also specifically investigated layer-parallel shortening 

and thickening and the transition to rapid (“explosive”) fold amplification, as well as making harmonic analyses of 

the experimental fold shapes. 

 Cobbold (1975a) carried out analogue experiments to study the sideways propagation of folds away from 

an initial isolated perturbation in a single layer undergoing layer-parallel shortening, using a pure-shear deformation 800 

rig (Cobbold, 1975b; Cobbold and Knowles, 1976). Materials used were well-calibrated paraffin waxes of different 

melting points, with power-law stress exponents of ca. 2.6 and an effective viscosity ratio between layer and matrix 

31

Solid Earth Discuss., doi:10.5194/se-2016-80, 2016
Manuscript under review for journal Solid Earth
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



of ca. 10. Conceptually this was an experimental investigation of the process considered theoretically and 

numerically by Biot et al. (1961) with an initial isolated bell-shaped perturbation, but for power-law viscous 

materials and a much lower (and more realistic) viscosity ratio. However, Cobbold (1975a) used a cylindrical form 805 

for the initial perturbation, rather than a bell-shape with the known Fourier integral representation of Eq. (26), and 

did not consider the propagation in terms of amplification of Fourier spectral components. Instead, he introduced the 

important concept of the perturbation flow lines (Passchier et al., 2005) to qualitatively investigate the sideways 

spread of the folding instability.  

 Gairola (1978) made single-layer fold experiments with plasticene layers embedded in putty to investigate 810 

the effects of progressive deformation on fold shape and particularly on the internal strain within the layer and on 

the varying position of the neutral surface. He found that the appearance of the neutral surface depends on the 

“ductility contrast” between the layer and matrix, and the amount of strain. A neutral surface may not appear at all if 

the contrast between layer and matrix is very small, due to the strong component of layer-parallel shortening, which 

agrees with recent results of numerical simulations (Frehner, 2011). 815 

 Neurath and Smith (1982) performed folding and necking experiments with wax models, measured the 

effective viscosities and power-law exponents for the wax models, and compared the experimentally determined 

amplifications rates for folding and necking with the corresponding theoretical rates. They showed that for folding, 

theoretical and measured amplification rates more or less agreed with the theoretical rate as derived by Smith (1975, 

1977, 1979) and the equivalent results of Fletcher (1974, 1977). 820 

 Abbassi and Mancktelow (1990) investigated the influence of initial perturbation shape on fold shape, 

establishing that markedly asymmetric folds, even with overturned limbs, could develop by amplification of a small 

initially asymmetric irregularity, despite the fact that the imposed boundary condition was layer parallel shortening 

in a pure shear deformation rig (Mancktelow, 1988a). Abbassi and Mancktelow (1992) and Mancktelow and 

Abbassi (1992) employed the isolated bell-shaped perturbation technique originally developed by Biot et al. (1961) 825 

directly in analogue experiments, both to investigate the effects of perturbation geometry on fold shape and lateral 

propagation (Cobbold, 1975a) and to experimentally determine fold amplification rates. Instead of calculating a 

numerical forward model for a specific amplification rate curve as done by Biot et al (1961), they reversed the 

approach and used the changing shape of an initial bell-shaped perturbation with known initial values of a and b (see 

Eq. (26) for the meaning of a and b) to determine, via Fourier analysis, the amplification rates for folding in well-830 
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calibrated power-law viscous materials (paraffin waxes of different melting temperatures; Cobbold, 1975a; 

Mancktelow, 1988b). The amplification rate curves determined in this way were directly comparable to those 

predicted theoretically (Fletcher, 1974; Smith, 1975; Fletcher, 1977; Smith, 1977) but for short wavelengths and 

particularly for narrow initial perturbations, the observed amplification rates were generally higher than theoretical 

values. This could reflect the strain softening behaviour of the layer, as also suggested by Neurath and Smith (1982) 835 

for their boudinage experiments (but significantly not for their folding experiments). The experiments indicate that 

bonding of the matrix-layer interface may have a much greater effect on the amplification rate curve than is 

theoretically predicted, at least for the low to moderate effective viscosity ratios investigated (8 and 30). For better 

bonding between layer and matrix, the amplification rate decreases and consequently the amount of initial layer 

parallel shortening increases. Abbassi and Mancktelow (1992) observed that the influence of the initial perturbation 840 

is greater for broader irregularities, when the average wavelength component is longer than the dominant 

wavelength, than for narrow isolated irregularities. 

Marques and Podladchikov (2009) placed a thin layer of either plasticine or polyethylene between viscous 

polydimethylsiloxane (PDMS, Dow Corning SGM36) below and Fontainebleau quartz sand above. The PDMS 

represents the ductile part of the lithosphere, the quartz sand the brittle parts and the thin layer of either plasticine or 845 

polyethylene the thin elastic core, which is easily flexed but unstretchable/unbreakable. Their results show that a 

very thin, elastic layer between an overlying brittle and underlying viscous medium produces folding as the 

dominant deformation mechanism during shortening, and not brittle faulting or viscous homogeneous thickening.  

Recently, Marques and Mandal (2016) have made experiments to investigate the buckling and post-

buckling behaviour of an elastic single layer (cellophane, plasticine, or polyethylene film) in a linear viscous 850 

medium (PDMS silicone putty). The experiments were performed in two stages: a first stage of buckling by layer-

parallel shortening at different rates and a second stage of buckling relaxation with fixed lateral boundaries. They 

found major contradictions between their experimental results and both the analytical results of Biot (1961) for the 

buckling phase and with the analytical solutions and conclusions of Sridhar et al. (2002) for the buckling relaxation 

stage. Their results have still to be explained by theoretical models. 855 

Analogue experiments on single- and multi-layer folding have generally investigated a geometry where the 

principal bulk shortening direction is within the layer and the principal extension axis is perpendicular to the layer. 

Experiments with oblique layers are technically difficult because the layer ends tend to slide along the boundaries. 
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Oblique loading of the ends also introduces unavoidable additional perturbation components, because the planar 

boundary is no longer parallel to the axial plane of the developing folds. Grujic and Mancktelow (1995) carried out 860 

pure and simple shear analogue experiments, where the intermediate axis was perpendicular to the layer (i.e. both 

the principal shortening and extension directions were within the layer). Models were generally constructed of 

power-law (n = 2-3) viscous paraffin waxes of different melting temperatures, but in some cases a matrix of linear 

viscous PDMS silicone putty was used to allow observation. Folds developed parallel to the stretching direction but 

significant amplification was only possible for a (very) high effective viscosity ratio (i.e. only for ca. 600 and not for 865 

ca. 30). In rotational simple shear experiments, Grujic and Mancktelow (1995) observed that, in high viscosity ratio 

experiments, the amplifying folds develop initially approximately parallel to the infinitesimal stretching direction. 

With increasing shear and amplification, the fold axes remain fixed to the same material points and therefore rotate 

as a passive line, rotating toward but not strictly tracking the finite extensional axis. As a result, there is a component 

of antithetic shear along the axial plane of these folds. The observation that fold hinges remain fixed to material 870 

points may reflect material damage and strain softening along the fold hinges, which correspond by definition to 

lines of maximum layer curvature. The paraffin waxes employed are strain softening (Mancktelow, 1988b), so that 

increased strain in the hinge will tend to subsequently localize further strain. 

   Davy and Cobbold (1991) modelled the lithosphere as 2, 3 or 4 layers: brittle crust (quartz sand), ductile 

crust (silicone), brittle mantle (quartz sand) and ductile asthenosphere (sugar solution). Variation in the rheology 875 

with depth (e.g. temperature dependence of viscosity) was not considered in the simplified model but the potential 

effects of erosion were. They investigated the interplay between buckling and lithospheric thickening, showing that 

thickening style is mainly dependent on mantle behaviour, as well as demonstrating the effect of low degrees of 

coupling, when the brittle crust can detach and buckle independently of mantle layers.  

Martinod and Davy (1994) modelled the development of periodic instabilities in continental and oceanic 880 

lithosphere under compression. The lithosphere was modelled as a stack of alternating brittle (quartz sand) and 

ductile (silicone putty) layers. As with Davy and Cobbold (1991), there was no vertical variation within the layers 

themselves. For small strain, the deformation modes mainly depend on the spatial distribution of the brittle layers 

and the amplitude of buckling is an exponential function of horizontal strain, as would be expected for folding (Eq. 

(9)).  885 
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3 Short history of necking 

The terms “boudin” and “boudinage” were first introduced by Lohest et al. (1908) and Lohest (1909) as a 

descriptive term for sausage-like structures (hence “boudin”, which is a French word for blood sausage) that they 

observed in the High-Ardenne Slate Belt, which were developed in psammitic layers embedded within a more pelitic 890 

matrix. However, recent studies now interpret these classic “boudins” of Lohest and co-authors to be in fact 

“mullions” (Urai et al., 2001; Kenis et al, 2002, 2004), developed due to layer shortening. “Pinch and swell” was 

already used by Matson (1905) as a purely descriptive term for the geometry of peridotite dykes from near Ithaca, 

New York, but without a sketch and with the implication that this was an original intrusive rather than tectonic 

structure. A short but relatively comprehensive summary of early literature on boudinage is given by Cloos (1947). 895 

By this time, there were already descriptions in the literature of more ductile pinch-and-swell structures (e.g. 

Ramsay 1866; Harker 1889; Walls 1937), but Cloos (1947) concentrated more on examples involving fracture and 

interpreted the initial fractures as tension joints normal to the direction of extension. However, he notes that “the 

barrel shape of the classical boudins is somewhat puzzling but seems to be a function of incipient flowage in the 

competent layer”. Fracture development producing rectangular or barrel-shaped is promoted by the dynamic (or 900 

tectonic) underpressure inherently developed in an extending competent layer, in contrast to the overpressure 

developed if the layer is shortened (Mancktelow, 1993, 2008). This under- or overpressure is associated with 

corresponding refraction in the principal stress axes in the more competent layer (Mancktelow, 1993), so that 

extensional fractures are nearly perpendicular to layering, as typically reported for brittle boudins (e.g. Cloos, 1947). 

As discussed by Rast (1956), the difference in behaviour between barrel-shaped and lozenge-shaped boudinage 905 

directly reflects the mechanical response of the layer: if the layer is effectively elasto-plastic (i.e. “brittle”) it 

develops extensional fractures (joints) and rectangular or barrel-shaped boudins; if viscous flow dominates (at least 

initially), mechanical instability will lead to necking and the development of pinch-and-swell or lozenge shapes. 

 

3.1 Theoretical results 910 
We focus here on studies investigating ductile necking instability. Many studies on boudinage consider brittle 

boudinage or study deformation with an initial configuration where the competent layer is already broken or already 

includes weak layers separating the layer. Such studies are useful to investigate the kinematic evolution of boudins 
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but yield no insight into the necking instability. An extensive review of boudinage and necking is also provided in 

Price and Cosgrove (1990). 915 

3.1.1 Single layer necking 
Galilei (1638) performed one of the first experiments to test the tensile strength of columns (Figure 8) and 

the first mathematical study of necking was probably by Considère (1885) (see also Dieter, 1986). Assuming a 

homogeneous layer with thickness H, the extensional load (here force per unit length) is F Hσ=  with σ  being the 

total stress. We assume in addition that the material is strain hardening, that is, the stress and hence the load-carrying 920 

capacity increases with increasing strain. During extension at an imposed constant rate, the stress also increases due 

to the decrease in layer thickness. Necking or localized deformation begins when the increase in stress due to 

decrease in layer thickness becomes greater than the increase in load-carrying ability of the layer due to strain 

hardening. At the onset of extension, the load required to extend the strain-hardening layer is increasing. The 

maximum load is achieved when the rate of change of the load during extension is zero, that is, 925 

0dF d H dHσ σ= + = . The ratio /dH H  corresponds to the vertical shortening and is identical to the negative of 

the horizontal (layer-parallel) extension, /dL L dε− = −  with L  being the layer length, assuming mass conservation 

and an incompressible material. The variation of the load can be reformulated to 

 0dH ddF d d d
H d

σσ σ σ σ ε σ
ε

= + = − = ⇒ =   (36) 

The above equation is known as the Considère criterion and states that the load is at a maximum when the rate of 930 

strain hardening, /d dσ ε , is equal to the stress, σ . When /d dσ ε σ>  then 0dF >  and the extension is stable, 

whereas when /d dσ ε σ<  then 0dF <  and unstable necking takes place. Introducing the dimensionless strain-

hardening coefficient /d dβ σ εσ= , the Considère criterion predicts onset of necking instability for 1β < . The 

Considère criterion can be used to predict the amount of extension at which necking takes place. For example, if a 

material follows a strain hardening stress-strain relation of the form mKσ ε= , with K  and m  being here material 935 

parameters ( 0; 0 1K m> < < ), then / /md d Kmσ ε ε ε= . Substituting the expressions for σ  and /d dσ ε  in the 

Considére criterion, /d dσ σ ε= , yields mε = . This means that necking begins when the extensional strain ε  is 

equal to the strain-hardening exponent m. 

The analysis above, which is based on the early work of Considère, assumes that the flow stress is only 

dependent on strain. A similar analysis can be done for a material that is both strain and strain-rate sensitive. The 940 
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strain-rate sensitivity is described by a standard, strain-rate hardening power-law viscous flow law, that is,

1/n
Cσ η ε=   (n > 1) where here ε  is the strain rate. The result of the stability analysis shows that the onset of necking 

instability takes place when (Hart, 1967; see also Dieter, 1986)  

 1 1
n

β + <   (37) 

If only strain-rate sensitivity is considered ( 0β = ), then the stability criterion reduces to 1/ 1n <  and indicates that 945 

necking in power-law viscous material only takes place if 1n > , which means that in a linear viscous material (

1n = ) a necking instability does not occur. This result for power-law viscous material has been confirmed by a 

slightly different analysis of Emerman and Turcotte (1984) and by the analysis of Smith (1975, 1977) presented in 

more detail below. The stability criterion of Hart (1967) in Eq. (37) is controversial and has been much discussed in 

the engineering literature because it is not universally valid for any kind of initial perturbation or imperfection 950 

(Ghosh, 1977; Hutchinson and Obrecht, 1978). Indeed, there is a very extensive engineering literature on necking in 

strain and strain rate sensitive materials due to its importance, for example, for metal forming, but a review of the 

non-geological literature is beyond the scope of this review. The interested reader is referred to (Hill, 1952; Ghosh, 

1977; Hutchinson and Neale, 1977; Hutchinson and Obrecht, 1978; Tvergaard et al., 1981; Hutchinson and Neale, 

1983; Dieter, 1986).              955 

Smith (1975, 1977) applied the stability analysis to both folding and necking of linear and power-law 

viscous layers embedded in a linear and power-law viscous medium. He showed that the dominant wavelength 

solution for folding and necking is identical (for the same material parameters), but that the corresponding 

amplification rates for folding and necking are different (Figure 14). The maximal amplification rate for necking, 

that is the maximum from Eq. (18) for 1θ = , which corresponds to the dominant wavelength, can be approximated 960 

(Smith, 1977) by  

 ( 1)d nα ≈ −   (38) 

The result shows that for linear (Newtonian) viscous fluids 0dα =  and there is no active component of necking and 

therefore that necking does not occur in linear viscous fluids, in agreement with Eq. (37) for 0β = . Hence, pinch-

and-swell structure is an excellent paleo-rheology indicator, because rocks developing a pinch-and-swell instability 965 

behaved as power-law viscous fluids (or more generally as nonlinear viscous fluids) during pinch-and-swell 

formation.    
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Neurath and Smith (1982) performed folding and necking experiments with wax models, measured the 

effective viscosities and power-law exponents for the wax models and compared the measured amplifications rates 

for folding and necking with the corresponding theoretical amplification rates. For folding, theoretical and measured 970 

amplification rates more or less agreed but for necking the measured amplification rates where significantly higher 

(a factor 2 - 3) than the theoretical ones (Neurath and Smith, 1982). They suggested that the discrepancy could be 

due to some kind of strain-softening by which the power law exponent would increase with increasing strain. They 

show analytically that strain softening can be described with an effective power-law stress exponent 

 1 1 2 1 1
3eff dn n α e ∗= −   (39) 975 

where ε ∗  is a measure for the strain during softening. Note that in Neurath and Smith (1982) values of effn  

remained positive during strain-softening so that the material remained strain-rate hardening.     

A simple 1D analytical solution for the evolution of thinning during necking of a power-law layer can be 

found by assuming that the layer is free and that plane sections in the layer remain plane during necking (Emerman 

and Turcotte, 1984; Schmalholz et al., 2008). The horizontal extension rate can then be expressed by a change of the 980 

layer thickness, that is 1
xx

dHD
H dt

= − . The power-law constitutive equation is n
xx xxD Bτ=  where xxτ  is the 

horizontal deviatoric stress and B is a material constant. Assuming in addition a constant horizontal extensional 

force, F (in units N/m), the deviatoric stress is / 2xx F Hτ =  (note that the factor 2 appears again because force is 

related to total stress and for a free layer the deviatoric stress is half the total stress). Equating the two above 

expressions for xxD  and using / 2xx F Hτ =  yields a nonlinear ordinary differential equation (ODE) for H 985 

 1

2

n
n dH FH B

dt
−  = −  

 
  (40) 

Integrating both sides of the equation with respect to time and using the initial condition ( ) 00H t H= =  yields the 

solution (Schmalholz, et al., 2008; Schmalholz, 2011) 

 
1

0

1
n

C

H tn
H t

 
= − 
 

  (41) 
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where the characteristic time ( )01/ n
c xxt Bt=  with 0 0/ 2xx F Hτ = . The thinning of the layer, quantified by 0/H H , 990 

with progressive (dimensionless) time, / Ct t , depends only on n. Eq. (41) shows that when / Ct t  reaches the value 

of 1/ n , then H is zero and the layer has been separated by necking (Figure 17B). Hence, the time necessary to 

separate a layer by necking is ( )01/ n
N xxt nBt= . For example, if a necking experiment for xxτ = 250 MPa would be 

performed with Madoc dolomite following the flow law of Davis et al. (2008), given by 
Q

n n nRT
xx xx xxD e Beµ τ τ

−
−= =  

with ε  = 1029 s-1, µ  = 45.6 GPa, Q = 420 kJmol-1, R = 8.31 kJmol-1K-1, T = 800 °C and n = 7, then B = 8.1422×10-995 

67 Pa-ns-1 and it would take nearly a year to separate the dolomite by necking because Nt  = ~328 days.                

 The above simple analytical solution provides reasonably accurate results for the evolution of thinning (

0/H H ) with progressive extension up to 0/H H  = 0.2, for effective viscosity ratios larger than 100 (Schmalholz et 

al., 2008). The evolution of thinning was also studied with numerical simulations (Schmalholz et al., 2008). The 

results show that initially straight vertical (layer-orthogonal) passive lines across the layer remain straight and 1000 

vertical during necking (i.e. plane sections remain plane), which means that there is essentially no layer-parallel 

shear around the necking region. Furthermore, the amplification rates of initial geometrical perturbations decrease 

with increasing extension, similar to finite amplitude folding. Similar to folding, necking is also associated with 

structural softening (Figure 18). 

 Solutions for the dominant wavelength and maximal amplification rate for necking are listed in Table 2. 1005 

 

3.1.2 Multilayer necking 
Theoretical studies on multilayer necking are rare in the geological literature. Most analytical multilayer 

necking studies have been applied to large-scale necking and lithospheric extension (see below). Most theoretical 

studies have considered brittle boudinage in order to calculate the stress field in multilayers under extension or to 1010 

calculate the stress fields for layers with pre-existing vertical fractures, in which case the initial fracturing process 

itself has not been investigated (Stromgard, 1973; Mandal et al., 2000).  

Cobbold et al. (1971) showed that if the theory of internal instability for folding, as developed by Biot 

(1957, 1964), is used for a compression direction orthogonal to the anisotropy orientation, then structures can form 

that are similar to pinch-and-swell structure (they also used the term internal boudins). 1015 
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3.1.3 Lithospheric necking 
Artemjev and Artyushkov (1971) were probably the first to suggest that rift systems are caused by crustal 

thinning due to a necking instability during lithospheric extension. It was subsequently shown that lithospheric 

necking for slow spreading rates (1-3 cm/yr) is feasible for creep flow laws considered typical for the lithosphere 1020 

(Tapponnier and Francheteau, 1978). Later, the stability analysis (described above for folding) has been applied to 

study necking instability during lithospheric extension (Fletcher and Hallet, 1983; Ricard and Froidevaux, 1986; 

Zuber and Parmentier, 1986), including lithospheric models with two competent layers (upper crust and upper 

mantle) separated by a weak lower crust (Zuber et al., 1986). Compared to small-scale necking models, models of 

lithospheric necking are usually more complex because they consider (i) gravity, (ii) one or more competent layers 1025 

with a very high power-law stress exponent mimicking effectively plastic deformation, (iii) a viscosity which decays 

exponentially with depth in the weak layers to mimic the temperature dependence and (iv) some kind of stress limit 

to mimic the brittle yield strength of rock.  

The impact of gravity on necking can be also quantified by an Argand number, that is, the dimensionless 

ratio of gravitational stress to extensional stress (Fletcher and Hallet, 1983) 1030 

 
2N

y

gHAr r
τ

∆
=   (42) 

where  ρ∆ is the density difference between the material below and above the competent layer, g the gravitational 

acceleration, H the thickness of the competent layer and the representative extensional yield stress in the 

competent layer. The Argand number NAr  is similar to the one that has been introduced by (England & McKenzie, 

1982) to scale the gravitational stress to the horizontal stress during lithospheric thickening and is similar to the 1035 

Argand number applicable to lithospheric folding (Schmalholz et al., 2002). Fletcher and Hallet (1983) showed that 

for a wide range of creep flow laws and an extension rate on the order of 10-15 s-1, the necking instability is strong (

dα > ~40) and that the dominant wavelength 30 90dL = − km. The ratio of dL  to the depth of the brittle-ductile 

transition (representing the thickness of the competent layer) ranges between 3 - 4 and typical values of NAr  are 

between 2 - 6. Several subsequent studies have applied the stability analysis to study necking in an extending 1040 

lithosphere and showed, for example, the strong impact of the rheological assumptions and stratification on necking 

yτ
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(Bassi and Bonnin, 1988; Martinod and Davy, 1992). Fletcher and Hallet (2004) and Pollard and Fletcher (2005; 

their section 11.2.4) presented large-scale analytical necking solutions that also consider the effect of erosion, which 

is described by a diffusion-type law. Fletcher and Hallet (2004) show that erosion can significantly increase the 

necking instability.     1045 

Recent studies on magma-poor rifted margins have identified so-called necking zones in which the crustal 

thickness is strongly reduced from a normal thickness of 30 – 35 km to about 5 – 10 km (Peron-Pinvidic and 

Manatschal, 2009). These necking domains separate the proximal domain from the hyperextended domains in which 

the continental crust is strongly thinned (e.g. Sutra et al., 2013). Recent studies on magma-poor margins indicate that 

the continental lithosphere can be significantly extended and necked over several hundreds of kilometres without a 1050 

lithospheric breakup that would result in the formation of new oceanic crust at a mid ocean ridge (Sutra et al., 2013). 

The observed width of necking zones ranges from 20 to 100 km for passive margins worldwide (Chenin, 2016). 

Within these necking zones the crustal thickness is reduced from about 30 km to about 10 km. Assuming that pre-

rift (initial) geometrical perturbations of crustal thickness have an amplitude (A0) on the order of 100 m requires an 

amplification, 0/A A , of 105 to thin an initially 30 km thick crust to 10 km. Using typical amplification rates (scaled 1055 

by the bulk extension rate) for the continental lithosphere in the range 40 – 100 (Fletcher and Hallet, 1983), the bulk 

extension required to achieve 0/A A  = 105 can be calculated by the formula ( ) ( )0ln / / 1dA A α −  (compare with Eq. 

(31)), which gives an extension of about 30% and 12% for amplification rates of 40 and 100, respectively. Applying 

these extension values to the 25 – 123 km range of dominant wavelengths derived by (Fletcher and Hallet, 1983) for 

typical continental rocks provides a corresponding range of “extended” wavelengths between 28 – 166 km. The 1060 

necking zone corresponds to half the extended wavelength and hence ranges between 14 – 83 km, which agrees with 

the observed widths of necking zones of 20 – 100 km (Chenin, 2016). The agreement between observed and 

predicted width of necking zones suggests that the observed necking zones at passive margins are indeed the result 

of mainly viscous necking.  

 Lithospheric extension, rifting and associated sedimentary basin formation in a number of regions 1065 

worldwide have been attributed to mainly lithospheric necking, such as the region around the Porcupine and 

Rockhall basins in the southern North Atlantic (Mohn et al., 2014), the Baikal rift (Artemjev and Artyushkov, 1971) 

or the Western Mediterranean back-arc basin (Gueguen et al., 1997). Furthermore, most kinematic or semi-

kinematic (including flexure) models of lithospheric thinning and associated sedimentary basin formation implicitly 
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assume a continuous necking of the lithosphere (McKenzie, 1978; Kooi et al., 1992). Such thinning models are of 1070 

practical importance for the assessment of hydrocarbon reservoir potential in extensional sedimentary basins (see 

applications).   

Necking has also been suggested to be the controlling process for slab detachment (Lister et al., 2008; 

Duretz et al., 2012). Detachment of an oceanic slab usually occurs when the corresponding ocean is closed and 

continental collision has started. The heavy oceanic slab is then hanging more or less vertically in the mantle and is 1075 

attached to the overlying continent. The downward extension is controlled by the negative buoyancy of the cold slab 

in the warmer mantle. The analytical necking solution of Eq. (41) has been applied to show the feasibility of slab 

detachment (by using the buoyancy as the driving force F) for the Hindukush region, as an example (Schmalholz, 

2011). The simple analytical solution can accurately describe the thinning of the lithospheric slab during slab 

detachment, which was also numerically simulated with 2D thermo-mechanical models considering 1080 

viscoelastoplastic rheologies, heat transfer by conduction and advection, and thermo-mechanical coupling by shear 

heating (Duretz et al., 2012). The first-order agreement between the simple 1D analytical solution and the 2D 

thermo-mechanical numerical solution indicates that the 1D necking solution captures the first-order processes of 

slab detachment. The simple ODE in Eq. (40) was elaborated into a system of ODE’s to study the impact of 

coupling between grain-sensitive rheology and grain-size evolution with damage on slab detachment (Bercovici et 1085 

al., 2015). The more elaborated system of ODE’s had to be solved numerically. Bercovici et al. (2015) show that 

weakening due to grain size reduction and damage in polycrystalline rock can significantly accelerate necking and 

hence slab detachment, so that detachment can occur in about 1 My.    

 

3.2 Experimental results 1090 
There are fewer experimental studies on the development of viscous pinch-and-swell necking for several 

reasons. Firstly, as shown theoretically by Smith (1975, 1977), Emerman and Turcotte (1984), and Eq. (37) above, 

the dynamic growth rate of necking in linear viscous materials is zero. Whereas for folds the kinematic or passive 

growth rate due to the homogeneous component of background strain is +1, reversing the sign of this bulk strain 

relative to the layer also reverses the sign of the passive growth rate: in contrast to folds there is a passive 1095 

deamplification of initial perturbations due to stretching of the layer. It follows that viscous necking should not 

develop in linear viscous materials as used in many analogue experiments. Smith (1977) did predict dynamic growth 
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of necks in strain-rate hardening power-law viscous materials, with the amplification rate increasing for higher 

values of the power-law stress exponent, especially in the layer. However, there are technical difficulties with 

developing necks in stiff power-law viscous layers in analogue experiments. As discussed above in relation to Eq. 1100 

(22), the effective viscosity in a power-law viscous material is a function of strain rate and, when the strain rate is 

zero, the effective viscosity should be infinite. In theoretical studies such as that of Smith (1977), the layer is 

infinitely long and the strain rate is taken as a given parameter. In an experiment, the layer is of finite length, is 

poorly bonded to the model boundary, and initially has a zero strain rate. In pure shear folding experiments, 

shortening directed along the length of the layer means that the layer ends have no alternative other than to move 1105 

inwards with the model walls. However, this constraint is not present when the walls extend away from the layer 

ends in a pure shear necking experiment. In such a model configuration, the layer represents a finite-length inclusion 

in a weaker matrix, equivalent to the case considered by Schmid et al. (2004) for folding of layers of finite length. 

Extending the discussion of Mancktelow and Pennacchioni (2010) on isolated power-law inclusions, for strictly 

power-law viscous materials, a finite-length layer with initially zero strain rate and infinite effective viscosity should 1110 

behave rigidly and detach from the model walls, with the matrix simply flowing around the layer ends. However, 

because no material has a perfect power-law rheology and the effective viscosity is generally asymptotically limited 

to a non-infinite value with decreasing strain rate, the situation is not as bad in practice as in theory. Also, following 

Schmid et al. (2004), increasing the length to thickness of the modelled layer(s) is advantageous, but there are 

realistic limits on the length of model rigs and long thin layers are more difficult to prepare accurately and to 1115 

observe in sufficiently fine detail. 

 Ramberg (1955) performed compression experiments orthogonal to layering of layered cakes of putty, 

plasticene (sic), and cheese (!), with either 1D or 2D compensating extension. The resulting structures are similar to 

natural boudinage and pinch-and-swell structure, but such models, like the models of Hall (1815) on folding, were 

more illustrative than quantitative. Griggs and Handin (1960) studied the mechanisms of deep earthquakes and 1120 

performed extension experiments with natural rock, but necessarily scaling length, time and temperature. Amongst 

others, they performed experiments with dolomite (Hasmark and Luning) and Eureka quartzite layers embedded in 

Yule marble for confining pressures of 200 and 500 MPa (2 and 5 kbar) and temperatures of 800 °C. They showed 

that, depending on the confining pressure and temperature, three macroscopic deformation processes take place: 

extension fracturing, faulting and uniform flow (necking). Extension fracturing takes place in the brittle regime at 1125 
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lower confining pressures and temperatures, faulting (i.e. shear failure) takes place at the transition between brittle 

and ductile deformation and uniform flow in the ductile regime at higher confining pressures and temperatures. For 

confining pressures of 200 and 500 MPa and 800 °C, the dolomite layers were necking while the quartzite layer was 

fracturing.  

 In addition to their experiments on folding in power-law viscous materials, Neurath and Smith (1982) also 1130 

performed necking experiments. The measured amplification rates where significantly higher (a factor 2 - 3) than the 

theoretical ones and they suggested that the discrepancy could be due to some kind of strain-softening, by which the 

power law exponent would increase with increasing strain. They showed analytically that strain softening can be 

described with an effective power-law stress exponent given in Eq. (39). Ghosh (1988) conducted experiments with 

plaster of Paris resting on a substrate of pitch with equal stretching of the layer in all directions to investigate 2D 1135 

chocolate–tablet structure. The study was designed to consider the geometry during progressive development and 

from the materials chosen could only develop brittle boudins rather than the pinch-and-swell structures considered 

here. Kidan and Cosgrove (1996) used the same rig employed in earlier folding experiments (Cobbold 1975a, 

1975b; Cobbold and Knowles, 1976) to investigate multi-layer boudinage, using layers of paraffin wax and 

plasticine. Their experiments generally developed rectangular boudins due to (sequential) fracturing but internal 1140 

pinch-and-swell structure in some cases developed on a larger scale, reflecting the overall anisotropy. 

 More recent experimental studies on boudinage in 2D or 3D have used specially designed rigs (Zulauf et 

al., 2003) and power-law materials with high stress exponents, such as plasticine with n = ~7 (McClay, 1976; Zulauf 

and Zulauf, 2004; Zulauf et al., 2011). As shown by Schöpfer and Zulauf (2002), plasticine never flows at steady 

state but is strongly strain hardening, with the stress exponent also increasing (in some mixtures markedly) with 1145 

increasing strain. Both of these effects promote heterogeneous deformation and localization (Hobbs et al., 1986), 

with the development of ductile shears, as noted by McClay (1976). Strain hardening is also a pre-requisite for the 

onset of necking according to the Considère criterion, as discussed in detail above. The experiments of Schöpfer and 

Zulauf (2002) with plasticine layers in a plasticine/oil mixture matrix developed pinch-and-swell structures even for 

remarkably low effective viscosity contrasts of ~1.5, with more distinct boudins at ratios of ca. 2.0 -2.5. Their results 1150 

were consistent with the theoretical dominant wavelength predicted by Smith (1977) for such low effective viscosity 

ratios. However, the experiments of Schöpfer and Zulauf (2002) also suggest that at these low viscosity ratios the 
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dominant wavelength is approximately constant. Only the boudin geometry is sensitive to the viscosity ratio, with 

pinch-and-swell geometries developing at the lower values. 

 Marques et al. (2012) used layers of viscoelastoplastic clay or elastic soft paper in linear viscous PDMS 1155 

silicone putty to investigate the influence of layer thickness and bulk strain rate on the average boudin width for 

brittle boudins. Although their natural measurements from south-west Portugal show a clear linear relationship 

between layer thickness and boudin width, as would be expected from elastic theory, the average boudin width in 

their experiments shows an exponential dependence on layer width and a power-law dependence on bulk strain rate. 

 1160 

4 Newer developments 

4.1 Nonlinear terms in the folding equation and localized folding 
Equations (5) and (8) for elastic and viscous folding, respectively, are linear and the corresponding solutions 

are periodic, that is, they can be expressed with trigonometric functions such as cosine or sine. However, most 

natural fold systems are not strictly periodic but irregular and sometimes localized. Localized folding is 1165 

characterized by the existence of large amplitudes only over a small region of a shortened layer (after Wadee, 1999). 

The reason for irregular and localized fold geometries has been controversially discussed in the last decades (e.g. 

Zhang et al., 1996; Manktelow, 1999; Schmid et al., 2010; Hobbs and Ord, 2012). There are essentially two 

fundamental reasons for irregular and localized fold geometries: (1) geometrical heterogeneities (including material 

heterogeneities), and (2) material softening.  1170 

Considering the first reason, if linear equations for folding are considered, then irregular and localized fold 

geometries can result from (i) an irregular and localized initial geometry of the layer or (ii) from non-homogeneous 

material properties. Concerning (i), in the thin-plate approach one usually assumes that the layer has initially a 

constant thickness but that the layer is initially not perfectly straight, for example, it can have the shape of a bell-

shaped function (Eq. (26); Figure 16). Stability analysis can consider initial irregularities either as deviation from a 1175 

straight layer having constant thickness or as initial variations in the layer thickness. The thin-plate approach and the 

stability analysis can also include the impact of nonlinear rheologies, such as a power-law flow that is strain-rate 

hardening (stress increases with increasing strain rate), but these flow laws are in practice linearized to provide 

accurate solutions provided fold amplitudes are small (i.e. limb dips smaller than ~20 degrees; Chapple, 1968; 

Schmalholz, 2006). Analytical results, numerical simulations and analogue experiments have shown that initial 1180 
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irregular layer geometries can generate a wide variety of irregular, non-periodic and localized fold geometries (e.g. 

Cobbold, 1975a; Abbassi and Mancktelow, 1990, 1992; Mancktelow and Abbassi 1992; Mancktelow, 1999, 2001; 

Schmalholz, 2006; Schmid et al. 2010). Concerning (ii), heterogeneities, such as stronger or weaker inclusions, in a 

perfectly straight layer or in the matrix close to the layer will cause local perturbations of the deformation and hence 

cause local deformations in the layer, which in turn cause a deviation from the straight geometry. These geometric 1185 

variations can then also cause irregular or localized fold shapes. One of the first localized folding solutions was 

presented by Smoluchowski (1909) for folding of an elastic layer under gravity. The solution is described by a 

sinusoidal waveform whose amplitude at one end of the layer is exponentially decaying along the (one-sided) 

infinite layer. The initial amplitude at one end of the layer is interpreted as result of local deviations from isostatic 

equilibrium (Smoluchowski, 1909).       1190 

Considering the second reason, if nonlinear equations for folding are considered then a much wider spectrum 

of solutions is possible. Non-linearities arise essentially due to two reasons: geometrical nonlinearities or material 

nonlinearities. Geometrical nonlinearities have been considered to describe the finite amplitude evolution because 

the linear solutions based on exponential amplitude growth break down when fold limb dips exceed ~20 degrees. 

Material nonlinearities, such as due to power-law flow laws, are often linearized and, as mentioned above, the 1195 

resulting fold geometries can be explained by the corresponding linearized equations. Therefore, the fundamental 

finite amplitude fold geometries (i.e. regular or localized) due to geometrical and material non-linearities for 

hardening behaviour can be well estimated with linearized equations because these linearised equations are valid up 

to limb dips of ~20 degrees.  However, other types of non-linearities have also been studied with the thin-plate 

approach, whereby the resistance of the material in which the layer is embedded (often termed the matrix or 1200 

foundation) is assumed to be nonlinear. The linear term for the matrix resistance in Eq. (5) is usually q kA=  but in 

the nonlinear analysis it is usually expanded to 2 3
1 2q kA c A c A= + + +  (Tvergaard and Needleman, 1980; Wadee, 

1999; Hunt et al., 2000). Typically, expressions like 2q kA cA= −  or 3q kA cA= −  have been considered where c is 

a constant. These nonlinearities describe a material softening of the matrix resistance because the matrix resistance 

becomes smaller as the amplitude becomes larger. Also nonlinear and viscoelastic behaviour of the matrix has been 1205 

investigated using ( )32 /4
/ / M

d dtq G A cA
L d dt G
π

η
 

= − + 
,  where G is the shear modulus of the embedding medium 

and c is a positive constant (Hunt et al., 1996). Some of these nonlinear folding equations are mathematically 
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identical to the nonlinear equations that have been studied in the framework of nonlinear dynamics. For example, the 

nonlinear ODE for the buckling of a free elastic beam (i.e. Eq. (3) in which the deflection is quantified by θ , that is, 

the angle between the horizontal x-direction and the beam and not by amplitude A) is 1210 

 ( )
2

2 sindD F
dx
θ θ+   (43) 

This nonlinear (due to the sinus function) folding equation is mathematically similar to the nonlinear ODE 

describing a pendulum (Hunt et al., 1989) 

 ( )
2

2 sindmL mg
dt
θ θ+   (44) 

where θ   is the deviation from the vertical direction of gravity, m is the mass, L the length of the pendulum and g 1215 

the gravitational acceleration. Eqs. (43) and (44) become exactly equivalent if we identify D as mL, F as mg and x as 

t (Hunt et al., 1989). This equivalence between the deformation of a beam and the motion of a pendulum can be 

traced back to Kirchhoff (1859) and is known as Kirchhoff’s kinetic analogue (see also Love, 1927). The pendulum 

equation is a simple example of a nonlinear dynamical system, which is typically described by a system of nonlinear 

ODEs and the derivatives are typical time derivatives. There exist many mathematical tools to describe and quantify 1220 

the behaviour of dynamical systems, such as phase plane, phase paths, limit cycles or homoclinic orbits (e.g. Jordan 

and Smith, 1999). These tools are useful to describe the behaviour of a dynamical system without actually explicitly 

solving the nonlinear ODE. Also, the so-called chaos theory is based on the analysis of dynamical systems (e.g. 

Guckenheimer and Holmes, 1983). Because of the mathematical equivalence between equations describing 

dynamical systems and folding of beams, the folding equations including nonlinear terms for the matrix resistance 1225 

have been analysed with the tools of phase plane etc. as mentioned above (e.g. Champneys, 1998; Hunt et al., 1989). 

Furthermore, some solutions for these nonlinear folding equations can also be expressed with non-periodic functions 

such as hyperbolic secant ( ( ) ( )sech 1/ coshx x= ( )2 / e ex x−= +  ), which is also a solution for solitary waves (or so-

called solitons; e.g. Drazin and Johnson, 1989). 

 Geometrical and material heterogeneities are intuitive reasons for observed irregular fold geometries 1230 

because natural rock layers are never perfectly straight or homogeneous before folding. Geometrical nonlinearities 

are intrinsic for folding because they arise naturally due to the deviations of the folded layer from the initially 

straight layer. Linearized equations can predict the fold shapes up to amplitudes for which the final irregularities can 
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already be seen, such as for an initial bell-shaped perturbation (Figure 16). Nonlinearities due to material softening, 

such as a nonlinear matrix resistance, are more difficult to justify, and especially quantify, in a straightforward 1235 

manner. Nonlinear matrix resistance is usually justified by some kind of material strain softening (e.g. Hobbs and 

Ord, 2012). However, this softening process is usually defined a priori and it is not clear what micromechanical 

processes actually causes such particular nonlinearities related to softening. Typical candidates responsible for 

softening are, for example, grain size reduction, mineral reactions or fluid-rock interaction. The impact of strain-rate 

softening on folding has been investigated also with numerical simulations (e.g. Hobbs et al., 2011) 1240 

 

4.2 Numerical simulations and coupled models 
This review focuses on analytical solutions, with some reference to the analogue models that were often used 

to qualitatively or (semi-)quantitatively test these analytical solutions. However, since the late 1960s more and more 

numerical studies of folding and necking have been performed. One of the first numerical simulations of folding in a 1245 

geological context was carried out by Dietrich (1969) and Dieterich and Carter (1969) and Stephansson and Berner 

(1971) already applied the finite element method to various tectonic processes such as folding, deformation of 

isolated boudins, isostatic adjustment and spreading at the mid-Atlantic ridge.  

Numerical simulations are essential to study folding and necking scenarios for which analytical solutions 

cannot be derived or for which only approximate analytical solutions exist. Such scenarios are for example (i) the 1250 

finite amplitude evolution of folding and necking in 2D and 3D for which only approximate analytical solutions are 

available (Chapple, 1968; Kaus and Schmalholz, 2006; Schmalholz, 2006; Schmalholz et al., 2008; Schmid et al., 

2008; Grasemann and Schmalholz, 2012; Fernandez and Kaus, 2014; Frehner, 2014; von Tscharner et al., 2016), or 

(ii) the numerical solution of nonlinear folding equations (see section 4.1.; e.g. Hunt et al., 1997; Wadee, 1999). A 

typical application for numerical simulations is, for example, the study of fold propagation (or serial folding) where 1255 

folding in a competent layer starts from a localized geometrical perturbation and new folds develop sequentially 

away from the initial perturbation along the layer. Such fold propagation has been studied in 2D in single- (e.g. 

Cobbold, 1977; Mancktelow, 1999; Zhang et al., 2000) and multilayers (Schmalholz and Schmid, 2012) and in 3D 

in single layers (Frehner, 2014).  

Many numerical simulations of folding consider a layer-parallel compression of the layers and the bulk 1260 

deformation of the model is close to pure shear. Folding of layers under bulk simple shear has been studied 
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numerically for single layers (Viola and Mancktelow, 2005; Llorens et al., 2013a) and multilayers (Schmalholz and 

Schmid, 2012, Llorens et al., 2013b). A main result of the simple shear studies is that folding under bulk simple 

shear does not generate asymmetric fold shapes but more or less symmetric fold shapes similar to the ones generated 

under bulk pure shear (cf. Lister and Williams, 1983). Also, when layers rotate in a simple-shear zone they can be 1265 

first shortened until the fold train is more or less orthogonal to the simple-shear zone. Further shear and rotation, 

however, extends the fold train which can unfold the layers again (Llorens, et al., 2013b). Laboratory experiments of 

such single layer folding and unfolding under bulk simple shear have been already performed by Ramberg (1959). 

For active folding, a continuous competent layer is actually not required. Adamuszek et al. (2013a) showed 

that it is sufficient for folding to have competent inclusions (can be of various size) aligned and clustered in a way to 1270 

form a “layer” of inclusion-clusters. If this “layer” of inclusions is embedded in a weaker viscous medium then the 

layer-parallel shortening also generates folding of the “layer” consisting of individual inclusions.   

Numerical simulations of the extension of power-law viscoplastic (von Mises; Schmalholz and Maeder, 2012) 

and power-law viscous (Duretz and Schmalholz, 2015) multilayers embedded in weaker power-law viscous medium 

showed the formation of individual shear zones that crosscut the entire multilayer. The shear zones form after some 1275 

period of distributed multilayer necking and only occur (i) when the weak inter-layers are power-law viscous and (ii) 

when the spacing between the strong layers is less than or approximately equal to the thickness of the strong layers. 

The shear zones crosscutting the entire multilayer form due to the alignment of individual necks in different layers, 

which is a finite amplitude effect when individual necking zones can form a connected network of weak zones. 

 1280 

The numerical studies mentioned above investigated fundamental mechanical folding and necking processes, 

but numerical solutions are also useful to study the coupling of folding and necking with other processes such as (i) 

the generation of heat during folding due to dissipative rock deformation (shear heating) and the related thermal-

softening caused by thermo-mechanical feed-back with temperature-dependent rock viscosity (Hobbs et al., 2007, 

2008; Burg and Schmalholz, 2008), (ii) the conversion of macroscale mechanical work into microscale mechanical 1285 

work during the reduction and growth of mineral grain size and related softening due to grain size reduction (Peters 

et al., 2015), (iii) the impact of metamorphic reactions on rock deformation (Hobbs et al., 2010), (iv) coupling of 

crustal folding or necking with erosion in 2D (Burg and Podladchikov, 2000; Burov and Poliakov, 2001) and 3D 

(Collignon et al., 2015), or (v) the coupling of folding with salt diapirism (Fernandez and Kaus, 2014). A detailed 
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outline of a coupled thermodynamic approach to study rock deformation and the resulting structures is given in the 1290 

recent textbook by Hobbs and Ord (2014). The impact of shear heating and grain size reduction on lithospheric 

folding and necking can be significant because both processes cause a mechanical softening of the rock (e.g. 

Regenauer-Lieb and Yuen, 1998; Regenauer-Lieb et al., 2006). For example, during shortening of the continental 

lithosphere, shear heating and thermal softening can cause a transition from distributed folding to localized ductile 

thrusting (Burg and Schmalholz, 2008; Schmalholz et al., 2009; Jaquet et al., 2016). 1295 

 

Numerical simulations are based on a basic set of partial differential equations resulting from the concepts 

of continuum mechanics. These equations are useful to describe continuous deformation and strain localization by 

shear bands (with no loss of velocity continuity). Elaborated numerical algorithms based on continuum mechanics, 

the so-called extended finite element method or XFEM (Belytschko et al., 2001), are additionally able to model 1300 

discontinuous fracture, for example due to 3D folding (Jäger et al., 2008). In geological studies it is more common 

to apply so-called discrete element methods to study brittle deformation and fracturing. In simple words, these 

discrete models assume that a material consists of particles which are connected by elastic springs. The force 

balance is controlled by Newton’s law (force equals mass times acceleration) which is an ODE (no spatial 

derivatives) and not a PDE. A fracture appears when the stress in a spring connecting two particles exceeds the yield 1305 

strength and the spring connection between the two corresponding particles is then removed. Discrete element 

modelling has been applied, for example, to study fracturing during detachment folding (Hardy and Finch, 2005) or 

to study the evolution of brittle boudinage in 2D and 3D (Abe and Urai, 2012; Abe et al., 2013).  

 

Recently, Adamuszek et al. (2016) developed the MATLAB© based software termed Folder, which can be 1310 

used to numerically model folding and necking in power-law viscous single- and multilayers. Folder is freely 

available under http://geofolder.sourceforge.net. Folder also includes all relevant analytical solutions for the 

amplification rates for folding and necking. Figure 12 and Figure 13 have been generated with the results of Folder. 

Folder is easy-to-use software with a user-friendly graphical interface. 200 years after the analogue experiments of 

James Hall, any student or researcher in geology can now easily perform similar experiments on his/her personal 1315 

computer. 
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5 Fundamental similarities and differences between folding and necking 

5.1 Similarities 
The stability analysis (Fletcher, 1974; Smith, 1975, 1977) can be used to study the initial (small amplitude) 1320 

stages of both folding and necking. Folding and necking result from the same type of mechanical instability. This 

instability causes initial geometrical perturbations on the layer interface to amplify with velocities that are faster 

than the velocities corresponding to the applied bulk deformation (e.g. pure shear). The dominant wavelength for 

folding and necking is identical for the same material parameters (Figure 14). Amplification rates for folding and 

necking increase with increasing viscosity ratio and with increasing power-law stress exponent in both the layer and 1325 

the embedding medium (Figure 14). 

Folding and necking are processes that can take place in single and multilayers and can also act on all scales. 

For large-scale folding and necking, gravity decreases the intensity of the folding and necking instabilities. The 

impact of gravity on folding and necking is usually quantified by some kind of Argand number, which is the ratio of 

the gravitational stress to the layer-parallel stress driving compression or extension, respectively.  1330 

Folding and necking are both associated with structural softening (also termed geometric softening or 

geometric weakening; Figure 18). The effective viscosity of a rock unit consisting of competent layers embedded in 

a weaker medium during shortening and extension with a constant bulk rate of deformation can be calculated by the 

ratio of the area-averaged stress to the bulk rate of deformation. If the shortening and extension would be 

homogeneous pure shear at a constant rate and the layer would deform by homogeneous thickening and thinning, 1335 

then the effective viscosity of the layered rock unit would remain constant. However, if folding or necking takes 

place the effective viscosity decreases during bulk shortening and extension, respectively, because the area-averaged 

stresses are smaller during folding and necking than during pure shear thickening and thinning. Related to the stress 

decrease is a decrease in dissipation (stress times strain rate) and the integral of the dissipation over the time 

(duration) of the deformation represents the work (or energy) necessary to perform the deformation. The structural 1340 

softening related to folding and necking hence reduces the mechanical work required to deform the layered rock 

unit. Therefore, folding and necking are the preferred deformation modes of mechanically layered rock units 

because folding and necking minimizes the work required for the deformation. During structural softening the 

material properties remain constant and for both linear and power-law viscous material the flow laws are always 

strain-rate hardening, that is, the stress increases with increasing strain rate. Hence, structural softening is 1345 
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fundamentally different to material softening, where some material property (e.g. cohesion, friction angle or 

effective viscosity) decreases with progressive strain. 

 

5.2 Differences 
During folding the layer thickness remains more or less constant and the shortening is compensated by a 1350 

lateral deflection (Figure 4). During necking the local variation in layer thickness is significant and the extension is 

compensated by localised thinning of the layer while the central axis of the layer remains more or less straight 

(Figure 4). 

In folding, a particular wavelength can be selected and “locked in” if the fold arc length does not vary 

significantly during fold amplification, which is the case for large viscosity ratios (> ~100). During necking a 1355 

wavelength cannot be “locked in” because the necking zone is continuously extending during bulk extension.  

The maximal amplification rates for folding and necking for the same material parameters are significantly 

different (Figure 14). Amplification rates for folding are larger than the ones for necking for the same material 

parameters. While folding occurs for linear and power-law viscous rheologies, necking only occurs for power-law 

viscous rheologies. Since the amplification rates for necking are smaller than the ones for folding, significant 1360 

necking ( 10dα > ) in rock requires higher viscosity ratios and/or higher power-law stress exponents than significant 

folding. Hence, the range of material parameters for significant necking is smaller than the parameter range for 

significant folding (see text below Eq. (31)). 

The yield stress for brittle fracture is typically described by a Mohr-Coulomb failure criterion, which is based 

on parameters determined by Byerlee (1978; Byerlee’s law). These yield stresses are significantly larger during 1365 

compression than during extension (Sibson, 1974), due to the implicit development of dynamic over- and 

underpressure respectively (Mancktelow 1993, 2008). Hence, layers under layer-parallel compression can deform 

viscously up to much larger stresses than layers under layer-parallel extension before fracture occurs. The available 

stress range for folding without fracturing is therefore much larger than the stress range for necking without 

fracturing. 1370 

The range of material parameters and flow stresses for significant necking is significantly smaller than the 

corresponding range for folding, which may be the main reason why pinch-and-swell structure is less frequent in 

nature than folding, and also why brittle boundinage is more frequent than pinch-and-swell structures.   
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6 Some applications 1375 

The main direct applications of analytical and numerical solutions for folding are the estimation of (i) the 

bulk shortening that was necessary to generate an observed fold and (ii) the viscosity ratio during the formation of 

the observed fold (Sherwin and Chapple, 1968; Talbot, 1999; Hudleston and Treagus, 2010). Natural rock 

viscosities are commonly estimated using laboratory derived flow laws but the extrapolation from laboratory (10-4 – 

10-6 s-1) to tectonic (10-12 - 10-15 s-1) strain rates makes such estimates uncertain. Also, flow laws are mainly 1380 

determined for single minerals or specific rock types whereas natural, polymineralic rocks are usually more 

heterogeneous. Therefore, independent viscosity estimates based on, for example, analysis of isostatic rebound (e.g. 

Haskell, 1937), mullions (Kenis et al., 2004) or fold structures are useful to test viscosity estimates based on 

laboratory-derived flow laws (e.g. Karato, 2008). Observed single-layer fold geometries in folded veins of calcite, 

quartz and pegmatite on the mm to cm scale suggest that average effective viscosity ratios are between 17 – 70 and 1385 

power-law exponents of the layer are between 2 – 5 (Hudleston and Treagus, 2010). Schmalholz and Podladchikov 

(2001) presented a diagram that enables the bulk shortening and viscosity ratio to be estimated from measured 

values of A/L and H/L for single layer folds. Adamuszek et al. (2011) developed a MATLAB© based software, the 

fold geometry toolbox, which determines automatically the values of A/L and H/L from fold shapes digitized from 

fold photos. Yakovlev (2012 and references therein) also presented a method to estimate bulk shortening from fold 1390 

shapes and further developed a method to reconstruct the tectonic evolution of folded regions, which he mainly 

applied to the Caucasus. A problem with the estimation of viscosity ratio from folds is that the same amplification 

rates and hence similar fold amplifications can be obtained for different combinations of viscosity ratio and power-

law exponents (Figure 14A). Lan and Hudleston (1995) presented a method to estimate the power-law exponent 

from observed fold shapes. Estimates of the viscosity ratios from fold shapes in combination with microstructural 1395 

analysis have also been applied to estimate the stress levels during folding (Trepmann and Stöckhert, 2009). 

Trepmann and Stöckhert (2009) estimated that stresses in folded quartz veins in fine-grained high pressure–low 

temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, to have 

been between 100 and 400 MPa.  
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Fold geometries can also be used to estimate the dominant folding mechanism. Schmalholz et al. (2002) 1400 

distinguished three types of folding mechanism depending on the controlling material parameters: (i) matrix-

controlled folding (controlled by viscosity ratio between layer and matrix), (ii) detachment folding (controlled by the 

thickness of the weak layer below a strong layer), and (iii) gravity folding (controlled by the ratio of gravity to 

viscous stress, that is, the Argand number, Eq. (34)). They presented a diagram which allows estimation of the 

dominant folding mechanism from the fold geometry alone. 1405 

Numerical simulations of necking have shown that during necking initially straight and vertical lines 

remain vertical and straight (Schmalholz et al., 2008). This feature justifies the application of thermo-kinematic 

models to lithospheric necking and the associated formation of sedimentary basins (e.g. McKenzie, 1978; Kooi et 

al., 1992). These thermo-kinematic models subdivide the lithosphere laterally into a series of vertical columns 

whose independent thinning is quantified by thinning factors. Such models have been applied to reconstruct the 1410 

thermo-tectonic history of extensional sedimentary basins, which is useful to evaluate the potential of hydrocarbon 

reservoirs. 2D thermo-kinematic models of lithospheric extension are significantly faster to compute than 2D 

thermo-mechanical models and can hence be used efficiently in combination with automated inversion or 

optimization methods (Poplavskii et al., 2001; White and Bellingham, 2002; Ruepke et al., 2008).    

 The mathematical solutions for folding and necking have also been used to assess the deformation style of 1415 

the outer shell of the moons of Jupiter. Dombard and McKinnon (2001) investigated the grooved terrain of 

Ganymede and argued that the regular structural periodicity found in this grooved terrain could be the result of an 

extensional necking instability. Dombard and McKinnon (2006) also argued that topographic undulation, with a ca. 

25 km wavelength, observed on Jupiter’s icy moon Europe could be due to contractional folding.   

 1420 

7 Summary and conclusions 

Significant progress has been made in understanding and quantifying the mechanical processes of folding and 

necking since the pioneering folding experiments of Hall and the pinch-and-swell observations of Ramsay. The 

geometry and mechanical evolution of many fold trains can be explained by the dominant wavelength theory of Biot 

and Ramberg and its elaboration to power-law viscous rheology by Fletcher and Smith. Folding and necking in 1425 

viscous layers are the result of a hydrodynamic instability. Folding and necking takes place because these processes 
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minimize the mechanical work required to shorten or extend mechanically-layered rock on all scales. The most 

important quantities to analyse folding and necking are the dominant wavelength and the corresponding maximal 

amplification rate. The two quantities allow the estimation of fundamental parameters relevant for folding and 

necking, such as the effective viscosity ratio or the Argand number, and also allow an evaluation of whether folding 1430 

or necking instabilities are sufficient to generate observable fold or pinch-and-swell structures.  

Folding and necking instabilities are most likely always active when ductile, layered rocks are shortened or 

extended on all scales. Observable folds and necks (pinch-and-swell structure) are usually generated when the 

amplification rate, α , is more than an order of magnitude larger than the absolute value of the bulk deformation 

rate, xxD .  1435 

Folds are more frequent in nature than pinch-and-swell structure because folding can occur in layered rock that 

deform according to viscous and power-law viscous flow laws while necking only occurs in rock with power-law 

viscous behaviour. Furthermore, stresses during folding (compression) can be significantly larger than stresses 

during necking (extension) before the rock fails by fracture. Hence, brittle boudinage is more frequently observed 

than continuous necking.   1440 

Future challenges are to quantify the coupling of folding and necking with other processes acting during rock 

deformation such as fracturing, shear heating, grain-size evolution, fluid-flow and metamorphic reactions. The 

concept of continuum mechanics can provide the system of equations that describes these coupled processes and 

numerical algorithms will be able to solve these equations. However, these equations and related numerical 

simulations will include many parameters and one of the biggest challenges may be to determine the controlling 1445 

parameters (e.g. via dimensional analysis) and to make the coupled thermodynamic processes comprehensible. In 

that sense, one of the main objectives for future research on folding and necking fits well with the famous statement 

of J. Willard Gibbs (1880, acceptance letter of Rumford Prize):”One of the principal objectives of theoretical 

research in any department of knowledge is to find the point of view from which the subject appears in its greatest 

simplicity”.   1450 
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Appendix 

Appendix 1: Derivation of the thin-plate equation from the 2D force balance equation 1465 

Mathematical folding studies either use the thin-plate equation or the stability analysis, which is based on a 

stream function solution for the full 2D force balance equations. We show here how the thin-plate equation can be 

derived from the full 2D force balance equation, based on the derivation of a general extended thin-sheet equation 

by Medvedev and Podladchikov (1999a, b). The thin-plate equation for folding is essentially derived by vertical 

integration and approximation of the 2D equilibrium equations. 1470 

The equilibrium equations in 2D without gravity are 

 0xyxx

x y
σσ ∂∂

+ =
∂ ∂

  (A.1) 

 0xy yy

x y
σ σ∂ ∂

+ =
∂ ∂

  (A.2)  

where x, y, xxσ , yyσ  and xyσ  are the horizontal (layer-parallel) coordinate, the vertical coordinate, the horizontal 

total stress, the vertical total stress and the shear stress, respectively. We apply the equilibrium equations to a layer 1475 

whose width in the x-direction is larger than its thickness in the y-direction. The bottom boundary ( ( )Sb x ) and the 

top boundary ( ( )St x ) of the layer are described by continuous functions along the x-direction. The stresses along 

the layer boundaries can be related to tractions on the top boundary { },t tx tyT T T=


 and on the bottom boundary 

{ },b bx byT T T=


. The tractions are related to the stress tensor for the top, 
St

σ , and bottom, 
Sb

σ , layer boundaries and 

the outer unit normal vectors on both boundaries, tn  and bn , by the Cauchy formula: 1480 

 t tSt

b bSb

T n

T n

= ⋅

= ⋅

σ

σ









  (A.3) 

The components of the outward unite normal vectors can be approximated for small slopes (i.e. dropping square root 

terms) on the layer boundaries by 
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∂∂ ∂     = − + ≈ −    ∂ ∂ ∂     





  (A.4) 

The components of the tractions at the top and bottom layer boundaries can then be expressed as 1485 
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σ σ

σ σ

σ σ

∂
= − +

∂
∂

= −
∂

∂
= −

∂
∂

= − +
∂

  (A.5) 

Vertical integration of Eq. (A.2) while changing the order of integration and differentiation by using the rules of 

differentiation of integrals with variable integration boundaries (Bronstein et al., 1997) yields 

 
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) 0
St x St x

St xxy
yy xy xy xy yy yySb x St x Sb x St x Sb x

Sb x Sb x

St x Sb xdy dy
x x x x
σ

σ σ σ σ σ σ
 ∂ ∂ ∂ ∂

+ = − + + − =  ∂ ∂ ∂ ∂ 
∫ ∫   (A.6) 

Using the formulas for the components of the tractions (Eq. (A.5)) in Eq. (A.6) yields 1490 

 
( )

( )

0
St x

xy ty ty
Sb x

dy T T
x

σ
 ∂

+ + =  ∂  
∫   (A.7) 

Similarly, vertical integration of the horizontal equilibrium Eq. (A.1) yields 

 
( )

( )

0
St x

xx tx bx
Sb x

dy T T
x

σ
 ∂

+ + =  ∂  
∫   (A.8) 

The integral in the first term in Eq. (A.7) can be written in different form using the rules of integration by parts 

 
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
St x St x

xy
xy xy xySt x Sb x

Sb x Sb x

dy y A dy y A y A
y
σ

σ σ σ
∂

= − − + − − −
∂∫ ∫   (A.9) 1495 

Integration by parts of two functions u and v can be generally expressed as 

 
b b

b

a
a a

dv duu dy vdy uv
dy dy

= − +∫ ∫   (A.10) 
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In Eq. (A.9) xyσ  represents u and y A−  represents v. The y A−  is the distance from the middle line of the layer, A

, in the y-direction and 

 ( ) ( )
2

St x Sb xA +
=   (A.11) 1500 

To find a relation between the vertically integrated vertical gradient of the shear stress and the vertically integrated 

horizontal gradient of the normal stress, we multiply Eq. (A.1) by y A− , integrate it vertically and apply the product 

rule of differentiation, which provides 
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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∫ ∫

∫ ∫ ∫
  (A.12) 

The right hand side of Eq. (A.12) can be further modified by changing the order of integration and differentiation to 1505 
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The integral in Eq. (A.7) can be finally expressed as 
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  (A.14) 

where ( ) ( )/ 2H St x A Sb x A= − = − −   . Substituting Eq. (A.14) into Eq. (A.7) yields 

 ( )
( ) ( )2

2
( ) ( )

( ) 0
2

St x St x

xx xx tx bx ty by
Sb x Sb x

A Hy A dy dy T T T T
x x xx

σ σ
   ∂ ∂ ∂ ∂  − + + − + + =        ∂ ∂ ∂∂     
∫ ∫   (A.15) 1510 

Expanding the second term in Eq. (A.15) and using Eq. (A.8) provides 
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∫ ∫   (A.16) 

Eq. (A.16) includes effects of both horizontal and vertical tractions on the layer boundaries and the only assumptions 

made so far are that slopes on the layer boundaries are small so that square root terms in Eq. (A.4) are negligible.  

The thin-plate approach of Biot (1961) assumes that only vertical tractions act on the layer boundaries, that 1515 

horizontal tractions are negligible and that H = constant. Under these assumptions and using the terminology

ty byT T q+ = , Eq. (A.16) reduces to   

 
( ) ( )2 2

2 2
( ) ( )

( ) 0
St x St x

xx xx
Sb x Sb x

Ay A dy dy q
x x

σ σ
   ∂ ∂

− + + =      ∂ ∂   
∫ ∫   (A.17) 

As in the thin-plate approach, we assume also that the origin of the vertical coordinate is in the centre of the layer 

and use ( ) / 2St x H=  and ( ) / 2Sb x H= − . Eq. (A.17) then becomes 1520 

 
/2 /22 2

2 2
/2 /2

0
H H

xx xx
H H

Ay dy dy q
x x

σ σ
− −

   ∂ ∂
+ + =   

∂ ∂   
∫ ∫   (A.18) 

Eq. (A.18) has already the basic form of the thin-plate equation with the three terms representing the bending 

moment due to flexure (left term), the moment due to compression (middle term) and the resistance of the 

embedding medium (right term). To arrive at the thin-plate equation for viscous folding we have to make 

assumptions about the stress distribution and the rheology. We assume that stresses are viscous and that the 1525 

horizontal total stress xxσ  is composed of a constant layer-parallel stress due to a bulk shortening rate, 4xx xxDσ η= , 

and of a fibre (bending) stress xxσ , which is only related to the bending (flexure) of the layer but not to the 

compression. The fibre stress depends on the flexural strain rate which can be approximated using Eq. (7) so that 

3 24 /xx y A t xσ η= − ∂ ∂ ∂ . The total horizontal stress can then be written as (Schmalholz et al., 2002) 

 
3

24 4xx xx xx xx
AD y

t x
σ σ σ η η ∂

= + = −
∂ ∂

   (A.19) 1530 

The separation of the total stress into a stress due to a bulk shortening rate and a stress due to flexure is similar to the 

separation of the stress into a basic state stress and a perturbed stress which is done in the stability analysis. 

Substituting Eq. (A.19) into (A.18) and evaluating the integrals yields 
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4 2 0
3 xx
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x t x
η σ∂ ∂

− + + =
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  (A.20) 

The component of xxσ  vanishes by performing the integral in the bending moment (because the stress is multiplied 1535 

by y in the left term in Eq. (A.18)) while the component of xxσ  vanishes by performing the integral in the middle 

term of Eq. (A.18) (because there the stress is not multiplied by y). Hence, the bending moment is only controlled by 

flexural stresses while the moment due to compression is only controlled by the stress due to bulk shortening rate. 

Eq. (A.20) corresponds to the thin-plate equation (4.8) in Biot (1961) and has been here derived from the general 2D 

force balance equations (A.1) and (A.2). Using now 4 /q kdA dtη= −  (see Eq. (A.35) and text below) yields 1540 

 
3 5 2

4 2 4 0
3 xx M
H A A AH k

tx t x
η σ η∂ ∂ ∂

− + − =
∂∂ ∂ ∂

  (A.21) 

Eq. (A.21) is identical to the equation (4.8) used in Biot (1961; he used the symbol P instead of xxσ ) to derive the 

formula for the dominant wavelength. Alternative thin-plate equations for elastic material or for gravity as the 

resisting mechanism against folding can be derived by using an elastic rheology and/or expressing q  by 

gravitational stresses in Eq. (A.18). 1545 
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Appendix 2: Stream function approach and matrix resistance of viscous embedding medium 

An essential step in the derivation of the dominant wavelength solution was the derivation of a correct term 

for the resistance of the viscous embedding medium, which depends not only on the amplitude, A, but also on the 

wavelength, L (see Eq. (8)). The derivation below follows essentially the one in Turcotte and Schubert (1982). The 1550 

constitutive equations (rheology) for linear viscous fluids are 
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  (A.22) 

where ( ) / 2xx yyP σ σ= − +  (pressure or negative mean stress) and vx and vy are the velocities in the x- and y-

direction, respectively. Substituting Eqs. (A.22) into the 2D equilibrium equations (A.1) and (A.2), and assuming a 

constant viscosity yields 1555 
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  (A.23) 

where we have used the relations from the incompressibility condition: 
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  (A.24) 

The top of the above equations is the equation for the conservation of mass if density is constant. Taking the 

derivative with respect to y of the top equation in (A.23), taking the derivative with respect to x of the bottom 1560 

equation in (A.23) and then subtracting both equations eliminates the pressure terms and yields 
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  (A.25) 

The two unknown velocities can be represented by the derivatives of a so-called stream function 
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∂
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  (A.26) 

Substituting equations (A.26) into (A.25) yields 1565 
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4 4
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x yx y
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+
∂ ∂
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+ =
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  (A.27) 

The above equation represents the force balance in a viscous medium with constant viscosity, and the stream 

function is a function of both x and y. Usually one assumes a periodic behaviour in the direction along the layer, i.e. 

the x-direction, and writes the stream function as 

 ( ) ( ) ( ), sinx y y kxϕ y=   (A.28) 1570 

Equation (A.27) then becomes 
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∂
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  (A.29) 

The general solution of equation (A.29) is 

 1 2 3 4e e e eky ky ky kyC C y C C yy − −= + + +   (A.30) 

Seeking a solution for a half space where the velocities and stresses vanish at large distance y →∞   one has to set 1575 

coefficients C3 and C4 to zero. A solution for the stream function is then 

 ( ) [ ] ( )1 2, e sinkyx y C C y kxϕ −= +   (A.31) 
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Calculating xv  via Eq. (A.31) from Eq. (A.26) and assuming that 0xv =  at 0y =  (which represents the interface 

between layer boundary and embedding medium) provides 2 1C kC= . The velocities are then using Eq. (A.31) and 

(A.26) 1580 

 ( )
( ) ( )

2
1

1

e sin

1 e cos

ky
x

ky
y

v C k y kx

v C ky k kx

−

−

=

= +
  (A.32) 

Substituting xv  from Eq. (A.32) in the horizontal force balance (top of Eqs. (A.23)) and integrating with respect to x 

to solve for the pressure yields 

 ( )2
12 e coskyP C k kxη −=   (A.33) 

Evaluation of yv  and /yy yD dv dy=  with Eq. (A.32) at the interface between matrix and layer (y = 0) yields  1585 

 
( ) ( )
( ) ( )

1

3
1

0 cos

0 e cos 0
y

ky
yy

v y C k kx

D y C k kx y−

= =

= = − =
  (A.34) 

The result ( )0 0yyD y = =  indicates that there is no vertical deviatoric stress acting on the layer interface and hence 

that yy Pσ = − . Incompressibility requires yy xxD D= −  and hence there is also no horizontal deviatoric stress acting on 

the layer boundary. The resistance of the viscous medium corresponds hence to the resistance of a visocus fluid at 

rest. The ( )0yv y =  must be equal to the time derivative of the deflection of the layer, ( )0 /yv y dA dt= = . Hence, 1590 

( ) ( )1 / / cosC dA dt k kx=  and the pressure at y = 0 is 

 ( )0 2 yy
dAP y k
dt

η σ= = = −   (A.35) 

The value of ( 0) yyP y σ= = −  is identical at the top and bottom layer boundaries if we assume that the material 

above and below the layer are identical and that the deflection A is identical, which is guaranteed if a constant 

thickness of the layer is assumed. The vertical resistance of the matrix against folding therefore results from the 1595 

pressure at the layer boundary (Eq. (A.35)). The total resistance of the embedding medium above and below the 

layer is then ( )2 0 4 /q P y kdA dtη= = =  with 2 /k Lπ= , using the convention, opposite to Biot (1961), that q is 

positive when acting against the positive direction of the deflection A.   
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Table 1. Frequently used symbols and their consistent meaning throughout the text. 

Symbol Meaning Symbol Meaning 

dL  Dominant wavelength dα  Dimensionless maximal amplification rate (scaled by xxD ) 

L   Wavelength α   Dimensionless amplification rate (scaled by xxD ) 

H  Layer thickness , ,xx xyD Dε   Strain rate and components 

MH  Thickness of matrix , ,xx yyτ τ τ   Deviatoric stress and components 

totH  Total thickness of multilayer , xxσ σ   Total stress and components 
A   Amplitude P   Pressure (mean stress) 
k   2 / Lπ  F   Force per unit length 
s   2 /H Lπ  t   Time 
η  Reference viscosity of layer xxD  Absolute value of basic state shortening/extension rate 

Mη  Reference viscosity of matrix IID   Square root of second strain rate invariant 

R  / Mη η  ,xx xxD τ   Basic state variables 

n  Power law stress exponent of layer ,xx xxD τ

  Perturbed variables 

Mn  Power law stress exponent of matrix ρ∆  Density difference 
g   Gravitational acceleration ,F NAr Ar   Argand number for folding and necking, respectively 

  2085 
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Table 2. Approximate solutions for dominant wavelength and maximal amplification rates for folding and necking. 

 Dominant wavelength Maximal amplification rate 
(dimensionless) 

Single-layer folding   
Power-law viscous folding 
(embedded in infinite medium; linear viscous 
solution for , 1Mn n =  ) 

1/2
32

6
d ML nR

H n
π=   ( )1/3 2/31.21d Mn n Rα =   

Large-scale folding 
(Power-law viscous layer resting on inviscid 
medium) 

2
2 xxd

DL
H gH
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layer with finite thickness MH ) 
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Multilayer folding   
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(embedded in infinite medium; linear viscous 
solution for , 1Mn n =  ) 
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Large-scale necking 
(Power-law layer resting on viscous medium with 
exponentially decaying viscosity for typical crustal 
rheologies and densities) 

3.7 0.3dL
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Figure 1. Original sketch of James Hall’s (1815) folding experiment. 
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Figure 2. Natural single-layer folds (A and B) and pinch-and-swell structure (C and D). A) Folded quartz vein 

around Val Figueiras, Portugal. B) Folded quartz vein from Cap de Creus, Spain. C) Extended calcite vein in finer 2095 

grained calcite marble from the Doldenhorn nappe, Switzerland. D) Extended quartz vein in grey calcite marble, 

Ugab region, northern Namibia. 
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Figure 3. A) Fold observations in the European Alps around the Lake Uri in Switzerland. The panel shows a part of 

a larger sketch of Johann Scheuchzer, which was published by Antonio Vallisneri (1715; see Luzzini, 2011; Vaccari, 2100 

2004). B). Sketch of necking (pinch-and-swell structure) from Ramsay (1866). 
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Figure 4. Numerical results of folding and necking simulations resulting from layer-parallel shortening and 

extension, respectively, of the same competent layer with an initial lateral thickness variation (initial perturbation). 

The geometries are the result of finite element simulations with a reference viscosity ratio of 100, a power-law 2105 

exponent of the layer of 10 and of the embedding medium of 3. The colors indicate the square root of the second 

invariant of the stress tensor ( ( )1/22 2
II xx xyσ τ τ= + ) which is non-dimensionalized by dividing it by the product of 

matrix reference viscosity to bulk deformation rate ( M xxDη ). For the initial geometry the value of IIσ  in the layer 

is close to the absolute value of the basic state deviatoric stress 2xx ref xxDτ η= . With progressive folding and necking 

the average stress of the layer-matrix system decreases. For necking, high stresses are localized in the neck. The 2110 

corresponding structural softening of the folding and necking simulations is shown in Figure 18.  
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Figure 5. Multilayer folds (A, B), multilayer folds with boudins (C) and multilayer pinch-and-swell with boudins 

(D). A) Folded carboniferous sandstones and shales at Millook Haven, Cornwall, England. B) Multilayer folds in 

alternating turbiditic sandstone and shale layers, lower Rhino Wash, Ugab region, northern Namibia. C) Folded and 2115 

extended layers of calc-silicate in marble, Monte Frerone, Adamello region, Italy. D) Extended multilayer of calc-

silicate in marble around Monte Frerone, Adamello region, Italy. 
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Figure 6. Outcrops showing the three-dimensional geometry of folds. A) Folded turbiditic sequence from 

Almograve, Portugal. B) Folded turbiditic sequences with a large fold hinge plunging towards the viewer from 2120 

Makran region, Iran.  

86

Solid Earth Discuss., doi:10.5194/se-2016-80, 2016
Manuscript under review for journal Solid Earth
Published: 31 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

Figure 7. Lithospheric folding and necking. A) Topography across Central Asia with data from Geocontext-Profiler. 

The thin solid line is the original data and the thick solid line shows the running average topography within a 150 

km wide window. The fold-like topography has been interpreted as the result of lithospheric folding (Burov et al., 2125 

1993). B) Crustal geometry across the Rockall and Porcupine basins modified after Mohn et al. (2014) and Welford 

et al. (2012). The thinned continental crust has been interpreted as the result of necking. 
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Figure 8. A) and B) shows sketches of Galilei (1638) who studied the strength of beams under loading (A) and the 

tensile strength of columns (B). C) shows a sketch of Euler (1744) who studied the so-called elastic curves (elastica) 2130 

and the critical load for buckling of loaded columns.   
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Figure 9. Sketch illustrating the Euler-Bernoulli beam theory and the related thin-plate approximations. 

 2135 
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Figure 10. Multilayer folds showing that the size of individual folds (quantified by amplitude and distance between 

hinges) is related to their layer thickness and that folds become systematically smaller as their layer thickness 

becomes thinner. Carbonates with silicate-rich layers belonging to the Jurassic El Quemado formation. The sample 2140 

was found by Stéphane Leresche around the Mount Fitz Roy, Southern Patagonia, and the photo was made by 

Yoann Jaquet. 

 

 

 2145 
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Figure 11. Configuration for analytical folding (A) and necking (B) models with some basic equations. A is 

amplitude, H is layer thickness, L is wavelength, V1,2 are horizontal boundary velocities, t is time, α  is 

amplification rate and xxD  is the applied bulk rate of deformation. 2150 
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Figure 12. Dimensionless amplification rate, α , versus wavelength to thickness ratio, /L H , for linear viscous 

layer and embedding medium and a viscosity ratio R = 15 (A) and R = 75 (B). Approximate results are based on the 

thin-plate approach and exact results (for infinitesimal amplitudes) are based on the stability analysis.  
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 2155 

Figure 13. Dimensionless amplification rate, α , versus wavelength to thickness ratio, /L H . All results have been 

calculated with the software Folder (Adamuszek et al., 2016) including the numerical results of finite element 

simulations indicated with red diamond symbols. A) Layer and matrix are linear viscous (power-law exponent of 

layer and matrix n, nM = 1), the viscosity ratio R = 75 and the initial ratio of amplitude to layer thickness A0 / H = 

0.01. B) Like A) but with A0 / H = 0.02. For linear viscous folding the finite amplitude solution of Adamuszek et al. 2160 

(2013b) can be used to calculate the amplification rate for finite amplitudes. C) Layer is power-law viscous and 

matrix is linear viscous (n = 6 and nM = 1), the viscosity ratio R = 75 and the initial ratio of amplitude to layer 

thickness A0 / H = 0.01. D) Like C) but with A0 / H = 0.02. 
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Figure 14. Ratio of dominant wavelength to layer thickness (thinner lines) and dimensionless amplification rate 2165 

(thicker lines) for folding (A) and necking (B) as function of the reference viscosity ratio and the power-law stress 

exponent of the layer. The embedding medium is linear viscous. For folding the amplification rates are significant 

also for small values of the power-law exponent (< 5) while for necking the amplification rates are insignificant (< 

10) for power-law exponents < 10. 
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 2170 

Figure 15. Sketch illustrating the linearization of power-law flow law by using basic state variables ( ,xx xxDτ ) and 

perturbed variables ( ,xx xxDτ 

 ). The reference viscosity for the basic state deformation, Rη , is related to the secant at 

the point ( ),xx xxD τ  while the viscosity for the perturbed deformation is related to the tangent at the point ( ),xx xxD τ . 

The slope of the tangent is a factor n smaller than the slope of the secant.   
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 2175 

Figure 16. Evolution of fold geometry for an initial geometrical bell-shaped perturbation calculated with an 

analytical solution (Eq. (27)) and a numerical finite element simulation. The parameters for the bell-shaped 

perturbation are a = 10 and b = 0.2 (initial layer thickness is 1), and the linear viscosity ratio is 75.   
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Figure 17. Approximate finite amplitude solutions for folding (A; Eq. (29)) and necking (B; Eq. (41)). For folding 2180 

the layer and embedding medium are linear viscous, while for necking the layer is power-law viscous and not 

embedded in a viscous medium (free layer or embedded in inviscid medium). A) Ratio of amplitude to wavelength 

(A / L) versus horizontal shortening ( ε ) for a viscosity ratio (R) of 50 and 100. Both the exponential and finite 

amplitude solution are plotted. The thin dashed linas indicate the breakdown of the exponential solution as 

quantified by Eq. (30). B) Ratio of layer thickness to initial layer thickness (H / H0) versus the dimensionless time (t 2185 

/ tc; see text below Eq. (41)) for different values of the power-law exponent (n). For n = 1 no necking instability is 

active and thinning is due to homogeneous pure shear thinning only. The time for complete thinning (H / H0 = 0) is 

given by t / tc = 1/n (see text). 
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Figure 18. Structural softening during folding (A) and necking (B) of the simulations shown in Figure 4. The 2190 

effective viscosity is calculated by the ratio of the area-averaged square root of the second invariant of the deviatoric 

stress tensor, IIσ , to the absolute value of the bulk rate of deformation, xxD , which was constant during the 

simulations. The effective viscosities are divided by the initial value of the effective viscosity and are plotted versus 

the bulk shortening for folding and the bulk extension for necking. Structural softening starts earlier for folding than 

for necking but the structural softening for necking is more intense.   2195 
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